(a)
The rate at which the station exhaust energy by heat as a function of the fuel combustion temperature
(a)
Answer to Problem 33P
The rate at which the station exhaust energy by heat as a function of the fuel combustion temperature
Explanation of Solution
Given information:The rate of work output of the engine is
Formula to calculate the carnot efficiency of the engine.
Here,
The actual efficiency of the engine is equal to two-thirds of the efficiency of the carnot engine.
Here,
Substitute
Formula to calculate the rate of heat input to the engine.
Here,
Formula to calculate the rate at which the station exhaust energy by heat as a function of the fuel combustion temperature
Here,
Substitute
Substitute
Substitute
Thus, the rate at which the station exhaust energy by heat as a function of the fuel combustion temperature
Conclusion:
Therefore, the rate at which the station exhaust energy by heat as a function of the fuel combustion temperature
(b)
The effect on the amount of the energy if the firebox is modified to run hotter by using more advanced combustion technology.
(b)
Answer to Problem 33P
The amount of the energy exhaust change if the firebox is modified to run hotter by using more advanced combustion technology because the exhaust power decreases as the fire box temperature increases.
Explanation of Solution
If the firebox is modified to run hotter by using more advanced combustion technology, the amount of the energy exhaust change because the exhaust power is inversely proportional to the fire box temperature. So, the exhaust power decreases as the fire box temperature increases.
Conclusion:
The amount of the energy exhaust change if the firebox is modified to run hotter by using more advanced combustion technology because the exhaust power decreases as the fire box temperature increases.
(c)
The exhaust power for
(c)
Answer to Problem 33P
The exhaust power for
Explanation of Solution
Given information: The rate of work output of the engine is
From equation (4), the formula to calculate the exhaust power for
Substitute
Thus, the exhaust power for
Conclusion:
Therefore, the exhaust power for
(d)
The value of
(d)
Answer to Problem 33P
The value of
Explanation of Solution
Given information: The rate of work output of the engine is
Write the expression for the exhaust power whuch would be only half as large as in part (c).
Here,
Substitute
Thus, the exhaust power whuch would be only half as large as in part (c) is
From equation (4), the formula to calculate the value of
Substitute
Thus, the value of
Conclusion:
Therefore, the value of
(e)
The value of
(e)
Answer to Problem 33P
The value of
Explanation of Solution
Given information: The rate of work output of the engine is
Write the expression for the exhaust power whuch would be one-fourth as large as in part (c).
Here,
Substitute
Thus, the exhaust power whuch would be one-fourth as large as in part (c) is
From equation (4), the formula to calculate the value of
Substitute
Thus, the value of
Conclusion:
Therefore, the value of
Want to see more full solutions like this?
Chapter 22 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- 6. 6. There are 1000 turns on the primary side of a transformer and 200 turns on thesecondary side. If 440 V are supplied to the primary winding, what is the voltageinduced in the secondary winding? Is this a step-up or step-down transformer? 7. 80 V are supplied to the primary winding of a transformer that has 50 turns. If thesecondary side has 50,000 turns, what is the voltage induced on the secondary side?Is this a step-up or step-down transformer? 8. There are 50 turns on the primary side of a transformer and 500 turns on thesecondary side. The current through the primary winding is 6 A. What is the turnsratio of this transformer? What is the current, in milliamps, through the secondarywinding?9. The current through the primary winding on a transformer is 5 A. There are 1000turns on the primary winding and 20 turns on the secondary winding. What is theturns ratio of this transformer? What is the current, in amps, through the secondarywinding?arrow_forwardNo chatgpt plsarrow_forwardWhat is the current, in amps, across a conductor that has a resistance of10 Ω and a voltage of 20 V? 2. A conductor draws a current of 100 A and a resistance of 5 Ω. What is thevoltageacross the conductor? 3. What is the resistance, in ohm’s, of a conductor that has a voltage of 80 kVand acurrent of 200 mA? 4. An x-ray imaging system that draws a current of 90 A is supplied with 220V. What is the power consumed? 5. An x-ray is produced using 800 mA and 100 kV. What is the powerconsumed in kilowatts?arrow_forward
- ՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Οarrow_forwardPart C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures. Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…arrow_forwardPhys 25arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning