(a)
Interpretation:
The value of
Concept introduction:
The relation between Gibbs free energy and electrode potential is as follows:
Here,
(b)
Interpretation:
The fraction of
Concept introduction:
The concentration is related to moles of solute and volume of solution as follows:
For a general equilibrium reaction as follows:
The equilibrium constant can be represented as follows:
Here,
Want to see the full answer?
Check out a sample textbook solutionChapter 22 Solutions
GENERAL CHEMISTRY-MOD.MASTERINGCHEM.
- A cave in Mexico was recently discovered to have some interesting chemistry. Hydrogen sulfide, H2S, reacts with oxygen in the cave to give sulfuric acid, which drips from the ceiling in droplets with a pH less than 1. The reaction occurring is H2S(g) + 2 O2(g) H2SO4() Calculate rH, rS, and rG. Is the reaction product-favored at equilibrium at 25 C? Is it enthalpy- or entropy-driven?arrow_forwardThe thermite reaction is 2Al(s) + Fe2O3(s) Al2O3(s) + 2Fe(s) (a) Calculate G for this reaction. (b) Calculate Keq for this reaction. Assume T = 298 K. You may have to do some mathematical manipulations to get your final numerical answer.arrow_forwardHow is the pH scale defined? What range of pH values corresponds to acidic solutions? What range corresponds to basic solutions? Why is pH = 7.00 considered neutral? When the pH of a solution changes by one unit, by what factor does the hydrogen ion concentration change in the solution? How is pOH defined? How arc pH and pOH for a given solution related? Explain.arrow_forward
- Calculate G and K at 25C for the reactions in Exercises 38 and 42.arrow_forwardCalculate the value of E for each of the following reactions. Decide whether each is product-favored at equilibrium in the direction written. [Reaction (d) is carried out in basic solution.] (a) Br2() + Mg(s) Mg2+(aq) + 2 Br(aq) (b) Zn2+(aq) + Mg(s) Zn(s) + Mg2+(aq) (c) Sn2+(aq) + 2 Ag+(aq) Sn4+(aq) + 2Ag(s) (d) 2 Zn(s) + O2(g) + 2 H2O() + 4 OH(aq) 2[Zn(OH)4]2(aq)arrow_forwardWet limestone is used to scrub SO2 gas from the exhaust gases of power plants. One possible reaction gives hydrated calcium sulfite: CaCO3(s) + SO2(g) + H2O() CaSO3 H2O(s) + CO2(g) Another reaction gives hydrated calcium sulfate: CaCO3(s) + SO2(g) + H2O() + O2(g) CaSO4 H2O(s) + CO2(g) (a) Which reaction is more product-favored at equilibrium? Use the data in the table below and any other information needed in Appendix L to calculate rG for each reaction at 25 C. (b) Calculate rG for the reaction CaSO3 H2O(s) + O2(g) CaSO4 H2O(s) Is this reaction product- or reactant-favored at equilibrium?arrow_forward
- Calculate equilibrium constants for the following reactions at 208 K. Indicate whether the equilibrium as written is reactant- or product-favored at equilibrium. (a) Co(s) + Ni2+(aq) Co2+(aq) + Ni(s) (b) Fe3+(aq) + Cr2+(aq) Cr3+(aq) + Fe2+(aq)arrow_forwardUsing the following data, calculate the value of Ksp for Ba(NO3)2, one of the least soluble of the common nitrate salts. Species Gfo Ba2+(aq) 561 KJ/mol NO3(aq) 109 KJ/mol Ba(NO3)2(s) 797KJ/molarrow_forwardThe equilibrium constant for the reaction N2(g) + O2(g) 2 NO(g) is 1.7 103 at 2300 K. (a) What is K for the reaction when written as follows? N2(g) + O2(g) NO(g) (b) What is K for the following reaction? 2 NO(g) N2(g) + O2(g)arrow_forward
- Calculate G at 25C for the reaction BaSO4(s)Ba2+(aq)+SO42(aq) See Appendix C for values of Gf.What is the value of the solubility product constant, Ksp, for this reaction at 25C?arrow_forwardAt a given temperature, K = 1.3 102 for the reaction N2(g)+3H2(g)2NH3(g) Calculate values of K for the following reactions at this temperature. a.12N2(g)+32H2(g)NH3(g) b. 2NH3(g)N2(g)+3H(g) c. NH3(g)12N2(g)+32H2(g) d. 2N2(g)+6H2(g)4NH3(g)arrow_forwardThe following reaction occurs in pure water: H2O(l)+H2O(l)H3O+(aq)+OH-(aq) which is often abbreviated as H2O(l)H+(aq)+OH-(aq) For this reaction, G = 79.9 kJ/mol at 25C. Calculate the value of G for this reaction at 25C when [OH] = 0.15 M and [H+] = 0.71 M.arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning