Concept explainers
The so-called pyroanions,
a. Draw the Lewis structures of these anions, and predict the geometry of the anions. What is the maximum number of atoms that can lie in a plane?
b. Each pyroanion in part (a) corresponds to a pyroacid,
c. What is the chlorine analogue of the pyroanions? For which acid is this species the anhydride?
Want to see the full answer?
Check out a sample textbook solutionChapter 22 Solutions
GENERAL CHEMISTRY-MOD.MASTERINGCHEM.
- The compound NF3 is quite stable, but NCl3 is very unstable (NCl3 was first synthesized in 1811 by P. L. Dulong, who lost three fingers and an eye studying its properties). The compounds NBr3 and NI3 are unknown, although the explosive compound NI3 NH3 is known. Account for the instability of these halides of nitrogen.arrow_forwardUsing the standard enthalpy of formation data in Appendix G, calculate the bond energy of the carbon-sulfur double bond in CS2.arrow_forwardLight of appropriate wavelength can break chemical bonds. Light having λ < 240 nm can dissociate gaseous O2. It requires light with λ < 819 nm to dissociate gaseous H2O2 to 2 OH. Assume that all of the photon energy is used solely for these dissociations. (a) Calculate the energy required to dissociate (i) O2 and (ii) H2O2. (b) Consider the results of part (a). How well do they correlate with the Lewis structures of O2 and H2O2? Explain your answer.arrow_forward
- Bond Enthalpy When atoms of the hypothetical element X are placed together, they rapidly undergo reaction to form the X2 molecule: X(g)+X(g)X2(g) a Would you predict that this reaction is exothermic or endothermic? Explain. b Is the bond enthalpy of X2 a positive or a negative quantity? Why? c Suppose H for the reaction is 500 kJ/mol. Estimate the bond enthalpy of the X2 molecule. d Another hypothetical molecular compound, Y2(g), has a bond enthalpy of 750 kJ/mol, and the molecular compound XY(g) has a bond enthalpy of 1500 kJ/mol. Using bond enthalpy information, calculate H for the following reaction. X2(g)+Y2(g)2XY(g) e Given the following information, as well as the information previously presented, predict whether or not the hypothetical ionic compound AX is likely to form. In this compound, A forms the A+ cation, and X forms the X anion. Be sure to justify your answer. Reaction: A(g)+12X2(g)AX(s)The first ionization energy of A(g) is 400 kJ/mol. The electron affinity of X(g) is 525 kJ/mol. The lattice energy of AX(s) is 100 kJ/mol. f If you predicted that no ionic compound would form from the reaction in Part e, what minimum amount of AX(s) lattice energy might lead to compound formation?arrow_forward4. Among the known dioxygen species (O2+, O2, O2− and O22−), which is expected to have the shortest bond length? O2+ O2 O2− O22−arrow_forwardBased on the bond energies for the reaction below, what is the enthalpy of the reaction? HC≡CH (g) + 5/2 O₂ (g) → 2 CO₂ (g) + H₂O (g)arrow_forward
- Explain formation of covalent bonds in the following chemical compounds (using three theories). SO? · HF CC4. C:BrzH2 . H2 CO3.arrow_forwardWhat word or two-word phrase best describes the shape of the phosphorus trichloride ( PC13 ) molecule? 0 X Śarrow_forwardCan you please help me with this?arrow_forward
- The molecular structure of NCI 3 is A. pyramidal O B. bent C. none of these O D. octahedral O E. trigonal planararrow_forwardAmmonia is an important chemical used in the production of fertilizer. Industrial production of ammonia from atmospheric nitrogen is difficult because of the energy required to cleave the N-N triple bond. Consider the balanced reaction of ammonia: N2(g) + 3H2(g) → 2 NH3 (9). This reaction has a value of K = 4.3 x 10-2 at 25 °C. Part A Estimate the AH for this reaction using bond energies. Bond Bond Dissociation Energy kcal/mol (kJ/mol) N-H 93 (391) N-N 38 (160) H-H 103 (432) N = N 226 (946) Express your answer as an integer. ΜΕ ΑΣΦ ? kJ/molarrow_forwardSelenium tetrafluoride is produced from a reaction of elemental Se with chlorine trifluoride according to the balanced chemical equation: 3 Se(g) + 4 CIF3(g) → 3 SEF4(g) + 2 Cl2(g) AHrxn = -1874 kJ Using AHrxn and the table of bond energies below, determine the bond energy of the Se-F bonds in SeF4. Note that all bonds in the reactants and products are single bonds. Bond Bond Energy (k.J/mol) CI-F 253 CI-CI 243 The units are kJ/mol. Do not include units in your answer. Scientific notation is optional. To write scientific notation in Canvas, type "e" to replace "x 10". For example, "1 x 1014" is written "1e+14" in Canvas.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning