Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 21.7, Problem 21.5QQ
To determine
Explain about the current in the circuit when the switch is opened.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A battery with emf ? and no internal resistance supplies current to the circuit shown in the figure below. When the double-throw switch S is open, the current in the battery is I0. When the switch is closed in position a, the current in the battery is Ia. When the switch is closed in position b, the current in the battery is Ib. Find the resistances (a) R1, (b) R2, and (c) R3.
A battery with Ɛ = 4.80 V and no internal resistance supplies current to the circuit shown in the figure below. When the double-throw switch
S is open as shown in the figure, the current in the battery is 1.00 mA. When the switch is closed in position a, the current in the battery is
1.12 mA. When the switch is closed in position b, the current in the battery is 1.82 mA.
R1
R2
R2
+
R3
(a) Find the resistance R,.
(b) Find the resistance R,.
(c) Find the resistance R2.
A battery with E = 7.80 V and no internal resistance supplies current to the circuit shown in the figure below. When the double-throw switch S is open as shown in the figure,
the current in the battery is 1.00 mA. When the switch is closed in position a, the current in the battery is 1.16 mA. When the switch is closed in position b, the current in the
battery is 1.80 mA.
R
R2
R2
S
Rs
(a) Find the resistance R,.
kΩ
(b) Find the resistance R.
kΩ
(c) Find the resistance R2
Chapter 21 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 21.1 - Consider positive and negative charges moving...Ch. 21.2 - Prob. 21.2QQCh. 21.2 - When does an incandescent lightbulb carry more...Ch. 21.5 - For the two incandescent lightbulbs shown in...Ch. 21.7 - Prob. 21.5QQCh. 21.7 - With the switch in the circuit of Figure 21.18a...Ch. 21.7 - Prob. 21.7QQCh. 21.9 - Consider the circuit in Figure 21.29 and assume...Ch. 21 - If the terminals of a battery with zero internal...Ch. 21 - Wire B has twice the length and twice the radius...
Ch. 21 - The current-versus-voltage behavior of a certain...Ch. 21 - Prob. 4OQCh. 21 - A potential difference of 1.00 V is maintained...Ch. 21 - Prob. 6OQCh. 21 - A metal wire of resistance R is cut into three...Ch. 21 - The terminals of a battery are connected across...Ch. 21 - Prob. 9OQCh. 21 - Two conducting wires A and B of the same length...Ch. 21 - When resistors with different resistances are...Ch. 21 - When operating on a 120-V circuit, an electric...Ch. 21 - Prob. 13OQCh. 21 - Prob. 14OQCh. 21 - In the circuit shown in Figure OQ21.15, each...Ch. 21 - Prob. 1CQCh. 21 - Prob. 2CQCh. 21 - Prob. 3CQCh. 21 - Referring to Figure CQ21.4, describe what happens...Ch. 21 - When the potential difference across a certain...Ch. 21 - Use the atomic theory of matter to explain why the...Ch. 21 - Prob. 7CQCh. 21 - (a) What advantage does 120-V operation offer over...Ch. 21 - Prob. 9CQCh. 21 - Prob. 10CQCh. 21 - If you were to design an electric heater using...Ch. 21 - Prob. 12CQCh. 21 - Prob. 13CQCh. 21 - Prob. 14CQCh. 21 - Why is it possible for a bird to sit on a...Ch. 21 - Prob. 1PCh. 21 - Prob. 2PCh. 21 - The quantity of charge q (in coulombs) that has...Ch. 21 - Prob. 4PCh. 21 - Prob. 5PCh. 21 - Figure P21.6 represents a section of a conductor...Ch. 21 - Prob. 7PCh. 21 - A 0.900-V potential difference is maintained...Ch. 21 - Prob. 9PCh. 21 - A lightbulb has a resistance of 240 when...Ch. 21 - Prob. 11PCh. 21 - Prob. 12PCh. 21 - While taking photographs in Death Valley on a day...Ch. 21 - Prob. 14PCh. 21 - If the current carried by a conductor is doubled,...Ch. 21 - Prob. 16PCh. 21 - Prob. 17PCh. 21 - Prob. 18PCh. 21 - Prob. 19PCh. 21 - Prob. 20PCh. 21 - Prob. 21PCh. 21 - Prob. 22PCh. 21 - Prob. 23PCh. 21 - Prob. 24PCh. 21 - A 100-W lightbulb connected to a 120-V source...Ch. 21 - Prob. 26PCh. 21 - Prob. 27PCh. 21 - Prob. 28PCh. 21 - A toaster is rated at 600 W when connected to a...Ch. 21 - Prob. 30PCh. 21 - Prob. 31PCh. 21 - Review. A well-insulated electric water heater...Ch. 21 - A battery has an emf of 15.0 V. The terminal...Ch. 21 - Two 1.50-V batterieswith their positive terminals...Ch. 21 - An automobile battery has an emf of 12.6 V and an...Ch. 21 - Prob. 36PCh. 21 - Prob. 37PCh. 21 - Prob. 38PCh. 21 - Consider the circuit shown in Figure P21.39. Find...Ch. 21 - Four resistors are connected to a battery as shown...Ch. 21 - Three 100- resistors are connected as shown in...Ch. 21 - Prob. 42PCh. 21 - Calculate the power delivered to each resistor in...Ch. 21 - Prob. 44PCh. 21 - The ammeter shown in Figure P21.45 reads 2.00 A....Ch. 21 - Prob. 46PCh. 21 - The circuit shown in Figure P21.47 is connected...Ch. 21 - In Figure P21.47, show how to add just enough...Ch. 21 - Taking R = 1.00 k and = 250 V in Figure P21.49,...Ch. 21 - For the circuit shown in Figure P21.50, we wish to...Ch. 21 - In the circuit of Figure P21.51, determine (a) the...Ch. 21 - Jumper cables are connected from a fresh battery...Ch. 21 - Prob. 53PCh. 21 - Prob. 54PCh. 21 - Prob. 55PCh. 21 - Prob. 56PCh. 21 - In the circuit of Figure P21.57, the switch S has...Ch. 21 - Prob. 58PCh. 21 - The circuit in Figure P21.59 has been connected...Ch. 21 - Assume that global lightning on the Earth...Ch. 21 - Prob. 61PCh. 21 - Prob. 62PCh. 21 - Prob. 63PCh. 21 - Prob. 64PCh. 21 - Prob. 65PCh. 21 - An oceanographer is studying how the ion...Ch. 21 - The values of the components in a simple series RC...Ch. 21 - Prob. 68PCh. 21 - Prob. 69PCh. 21 - Prob. 70PCh. 21 - The student engineer of a campus radio station...Ch. 21 - Prob. 72PCh. 21 - A battery has an emf and internal resistance r. A...Ch. 21 - Prob. 74PCh. 21 - Prob. 75PCh. 21 - Prob. 76PCh. 21 - Prob. 77P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the circuit of Figure P21.57, the switch S has been open for a long time. It is then suddenly closed. Take = 10.0 V, R1 = 50.0 k, R2 = 100 k, and C = 10.0 F. Determine the time constant (a) before the switch is closed and (b) after the switch is closed. (c) Let the switch be closed at t = 0. Determine the current in the switch as a function of time.arrow_forwardFind the direction of the current in the resistor shown in Figure P20.16 (a) at the instant the switch is closed, (b) after the switch has been closed for several minutes, and (c) at the instant the switch is opened. Figure P20.16arrow_forwardIntegrated Concepts (a) What energy is dissipated by a lightning bolt having a 20,000-A current, a voltage of 1.00102 MV, and a length of 1.00 ms? (b) What mass of tree sap could be raised from 18.0°C to its boiling point and then evaporated by this energy, assuming sap has the same thermal characteristics as water?arrow_forward
- With the switch in the circuit of Figure 21.18a open, there is no current in R2. There is current in R1, however, and it is measured with the ammeter at the right side of the circuit. If the switch is closed (Fig. 21.18b), there is current in R2. What happens to the reading on the ammeter when the switch is closed? (a) The reading increases. (b) The reading decreases. (c) The reading does not change.arrow_forwardIn (Figure 1), the total resistance is 12.0 kΩ , and the battery's emf is 26.0 V . The time constant is measured to be 14.0 μs . Calculate the total capacitance of the circuit. Calculate the time it takes for the voltage across the capacitor to reach 15.0 VV after the switch is closed.arrow_forwardQuestion 8. Please help with the question attached below.arrow_forward
- You connect a battery, a resistor, and a capacitor as shown in Figure 4, in that e = 36.0 V, C = 5.0 uF and R = 120 Ohms C. The switch S is closed at t = 0. (a) When the voltage across the capacitor is 8.00 V, what is the magnitude of the current in the circuit? (b) At what time t after the switch is closed the voltage across the capacitor is equal to 8.00 V? (c) When the voltage across the capacitor equals 8.00 V, at what speed is energy being stored in the capacitor? Translation: "Chave aberta" = switch openarrow_forwardA battery with Ɛ = 8.60 V and no internal resistance supplies current to the circuit shown in the figure below. When the double-throw switch S is open as shown in the figure, the current in the battery is 1.00 mA. When the switch is closed in position a, the current in the battery is 1.16 mA. When the switch is closed in position b, the current in the battery is 1.80 mA. R1 R2 R2 S (a) Find the resistance R,- kN (b) Find the resistance R2. kn (c) Find the resistance R,.arrow_forwardA battery with E = 5.10 V and no internal resistance supplies current to the circuit shown in the figure below. When the double-throw switch S is open as shown in the figure, the current in the battery is 1.00 mA. Wwhen the switch is closed in position a, the current in the battery is 1.22 mA. When the switch is closed in position b, the current in the battery is 1.98 mA. R1 R2 R2 (a) Find the resistance R,. kN (b) Find the resistance R,. kn (c) Find the resistance R,.arrow_forward
- = The emfs in the figure below are &₁ = 5.00 V and E₂ = 21.0 V. The resistances are R₁ when the switch is in the following states. (a) open I1 0.2295 R4 12: 13: = 0.2295 14 = 0 = 0.2295 (b) closed I1 = 0.246 14 = ww A A A A A A A www R₁ R₂ ww R3 12: = 0.226 13: = 0.226 0.076 X Your response differs from the correct answer by more than 100%. A E2 15.50, R₂ = 30.5 , R3 = 45.5, and R4 = 58.0 Q. Find the magnitude of the current in each resisarrow_forwardThe capacitor in the circuit shown is fully charged by a 24 V battery. The switch is closed at t = 0. At sometime after the switch is closed, the voltage across the capacitor is measured to be 10 V. What is the current in the circuit at this time, in Ampere? C = 3.0 µF, and R = 2.0 02. Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement. Cilarrow_forwardThe current in a single-loop circuit with one resistance R is 5.0 A.When an additional resistance of 2.0 is inserted in series with R, the current drops to 4.0 A.What is R?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY