(a)
The charge on the capacitor
(a)
Answer to Problem 69P
The charge on the capacitor
Explanation of Solution
The switch is closed in the electric circuit and the current exists in a simple series circuit as shown in figure
Write the expression for the power delivered to the resistor.
Here,
Use equation (I) to solve for
Write the expression for the potential difference across the resistor
Here,
Write the expression for the charge on the capacitor
Here,
Conclusion:
Substitute
Substitute
Substitute
Therefore, the charge on the capacitor
(b)
The amount of charge on the capacitor
(b)
Answer to Problem 69P
The amount of charge on the capacitor
Explanation of Solution
Consider the switch is closed to find the emf of the battery and the charge in the capacitor
Write the expression for the potential difference across
Write the expression for the charge on the capacitor
Write the expression for the emf of the battery.
Here,
Write the expression for
Use equation (VIII) in (VII) to solve for
Here,
After the switch is opened, no current exists. The potential difference across each resistor is zero. The emf of the battery appears across both capacitors.
Write the expression for the new charge on the
Write the expression for the amount of the charge on the capacitor is changed
Here,
Conclusion:
Substitute
Substitute
Substitute
Substitute
Substitute
Therefore, the amount of charge on the capacitor
Want to see more full solutions like this?
Chapter 21 Solutions
Principles of Physics: A Calculus-Based Text
- A potential difference of 1.00 V is maintained across a 10.0- resistor for a period of 20.0 s. What total charge passes by a point in one of the wires connected to the resistor in this time interval? (a) 200 C (b) 20.0 C (c) 2.00 C (d) 0.005 00 C (e) 0.050 0 Carrow_forwardIntegrated Concepts (a) What energy is dissipated by a lightning bolt having a 20,000-A current, a voltage of 1.00102 MV, and a length of 1.00 ms? (b) What mass of tree sap could be raised from 18.0°C to its boiling point and then evaporated by this energy, assuming sap has the same thermal characteristics as water?arrow_forwardAn electric eel generates electric currents through its highly specialized Hunters organ, in which thousands of disk-shaped cells called electrocytes are lined up in series, very much in the same way batteries are lined up inside a flashlight. When activated, each electrocyte can maintain a potential difference of about 150 mV at a current of 1.0 A for about 2.0 ms. Suppose a grown electric eel has 4.0 103 electrocytes and can deliver up to 3.00 102 shocks in rapid series over about 1.0 s. (a) What maximum electrical power can an electric eel generate? (b) Approximately how much energy does it release in one shock? (c) How high would a mass of 1.0 kg have to be lifted so that its gravitational potential energy equals the energy released in 3.00 102 such shocks?arrow_forward
- A battery with = 6.00 V and no internal resistance supplies current to the circuit shown in Figure P27.9. When the double-throw switch S is open as shown in the figure, the current in the battery is 1.00 mA. When the switch is closed in position a, the current in the battery is 1.20 mA. When the switch is closed in position b, the current in the battery is 2.00 mA. Find the resistances (a) R1, (b) R2, and (c) R3. Figure P27.9 Problems 9 and 10.arrow_forwardIn the circuit of Figure P21.57, the switch S has been open for a long time. It is then suddenly closed. Take = 10.0 V, R1 = 50.0 k, R2 = 100 k, and C = 10.0 F. Determine the time constant (a) before the switch is closed and (b) after the switch is closed. (c) Let the switch be closed at t = 0. Determine the current in the switch as a function of time.arrow_forwardPower P0 = I0 V0 is delivered to a resistor of resistance R0. If the resistance is doubled (Rnew = 2R0) while the voltage is adjusted such that the current is constant, what are the ratios (a) Pnew/P0 and (b) Vnew/V0? If, instead, the resistance is held constant while Pnew = 2P0, what are the ratios (c) Vnew/V0, and (d) Inew/I0?arrow_forward
- (a) What is the average power output of a heart defibrillator that dissipates 400 J of energy in 10.0 ms? (b) Considering the high-power output, why doesn’t the defibrillator produce serious bums?arrow_forwardTwo conducting wires A and B of the same length and radius are connected across the same potential difference. Conductor A has twice the resistivity of conductor B. What is the ratio of the power delivered to A to the power delivered to B? (a) 2 (b) 2 (c) 1 (d) 12 (e)12arrow_forwardWhen operating on a 120-V circuit, an electric heater receives 1.30 103 W of power, a toaster receives 1.00 103 W, and an electric oven receives 1.54 103 W. If all three appliances are connected in parallel on a 120-V circuit and turned on, what is the total current drawn from an external source? (a) 24.0 A (b) 32.0 A (c) 40.0 A (d) 48.0 A (e) none of those answersarrow_forward
- In the circuit shown in the figure the switch has been closed for a long time so that the capacitor is fully charged. At t=0 the switch is opened. Write an expression for the charge on the capacitor as a function of time. 12.0 kN 10.0 µF 9.00 V Ro = 15.0 kN 3.00 kN Select one: а. Q%3D 101С(1 — е 4/0.03) O b. Q = 50µCe-t/0.18 O c. 12μC(1-ε 4015) Q = 90µC(1 – e t/0.15) Q = 90µCe t/0.15 Q = 15µC(1 – e t/0.18) Q = 10µCe t/0.15 O h. Q = 90µCe t/0.03arrow_forwardhelparrow_forwardA 22.0 V battery moves 7.6 KC of charge. How much energy does the battery deliver? A 2.9x10-³J B 3.5 x 10² J C 1.7 x 105 J D 1.4 x 10¹¹ Jarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College