The circuit shown in Figure P21.47 is connected for 2.00 min. (a) Determine the current in each branch of the circuit. (b) Find the energy delivered by each battery. (c) Find the energy delivered to each resistor. (d) Identify the type of energy storage transformation that occurs in the operation of the circuit. (e) Find the total amount of energy transformed into internal energy in the resistors.
Figure P21.47 Problems 47 and 48.
(a)
The current in each branch of the circuit.
Answer to Problem 47P
The current
Explanation of Solution
Write the expression for the Kirchhoff’s loop rule in second loop from the left of the figure
Here,
Write the expression for the Kirchhoff’s loop rule in first loop from the left of the figure
Write the expression for the Kirchhoff’s junction rule in the figure
Use equation (III) in (I) and solve the equation.
Use equation (II) to solve for
Use equation (IV) in (V) to solve for
Use equation (VI) to solve for
Use equation (VII) in (V) to solve for
Use equation (VIII) and (VII)in (III) to solve for
Conclusion:
Therefore, the current
(b)
The energy delivered to each battery.
Answer to Problem 47P
The energy delivered to
Explanation of Solution
Write the expression for the energy delivered to the battery.
Here,
Write the expression for the
Here,
Use equation (XI) in (X) to solve for
Conclusion:
Substitute
Substitute
Therefore, the energy delivered to
(c)
The energy delivered to each resistor.
Answer to Problem 47P
The energy delivered to
Explanation of Solution
Write the expression for the energy delivered to the resistor.
Here,
Conclusion:
Substitute
Substitute
Substitute
Substitute
Substitute
Therefore, the energy delivered to
(d)
The type of energy transformation occurs in the operation of the circuit.
Answer to Problem 47P
The chemical energy is transformed to the internal energy in the resistors.
Explanation of Solution
The chemical energy in the
Conclusion:
Therefore, the chemical energy is transformed to the internal energy in the resistors.
(e)
The total amount of energy transformed into internal energy in the resistors.
Answer to Problem 47P
The total amount of energy transformed into internal energy in the resistors is
Explanation of Solution
Write the expression for the total amount of energy transformed into internal energy in the resistors.
Here,
Conclusion:
Substitute
Therefore, the total amount of energy transformed into internal energy in the resistors is
Want to see more full solutions like this?
Chapter 21 Solutions
Principles of Physics: A Calculus-Based Text
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- look at answer show all work step by steparrow_forwardLook at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning