Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 21, Problem 13CQ
To determine
Draw the different electric circuits for three light bulbs and a battery.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The figure (Figure 1) shows a simplified circuit for a photographic flash unit. This circuit
consists of a 9.0-V battery, a 50.0-ks resistor, a 140-μF capacitor, a flashbulb, and two
switches. Initially, the capacitor is uncharged and the two switches are open. To charge the
unit, switch S₁ is closed; to fire the flash, switch S₂ (which is connected to the camera's
shutter) is closed.
Figure
9.0 V
• 50.0 ΚΩ
$₁
140μF|
S₂
1 of 1
How long does it take to charge the capacitor to 4.0 V ?
Express your answer using two significant figures.
VG ΑΣΦ
t =
Submit
Provide Feedback
Request Answer
?
S
The figure (Figure 1) shows a simplified circuit for a
photographic flash unit. This circuit consists of a 9.0-V
battery, a 50.0– kN resistor, a 140-µF capacitor, a
flashbulb, and two switches. Initially, the capacitor is
uncharged and the two switches are open. To charge the
unit, switch S1 is closed; to fire the flash, switch S2 (which
is connected to the camera's shutter) is closed.
Part A
How long does it take to charge the capacitor to 4.5 V ?
Express your answer using two significant figures.
ΑΣφ
t =
Submit
Previous Answers Request Answer
Figure
1 of 1
1
* Incorrect; Try Again; 2 attempts remaining
Provide Feedback
9.0 V
S2
50.0 kN
140 μ
This time-lapse photo of a figure-skater was obtained using a camera
with an electronic flash attachment. The energy for each flash of light comes
from the electrical energy stored in a capacitor. Explain how the capacitor
works in a circuit.
Chapter 21 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 21.1 - Consider positive and negative charges moving...Ch. 21.2 - Prob. 21.2QQCh. 21.2 - When does an incandescent lightbulb carry more...Ch. 21.5 - For the two incandescent lightbulbs shown in...Ch. 21.7 - Prob. 21.5QQCh. 21.7 - With the switch in the circuit of Figure 21.18a...Ch. 21.7 - Prob. 21.7QQCh. 21.9 - Consider the circuit in Figure 21.29 and assume...Ch. 21 - If the terminals of a battery with zero internal...Ch. 21 - Wire B has twice the length and twice the radius...
Ch. 21 - The current-versus-voltage behavior of a certain...Ch. 21 - Prob. 4OQCh. 21 - A potential difference of 1.00 V is maintained...Ch. 21 - Prob. 6OQCh. 21 - A metal wire of resistance R is cut into three...Ch. 21 - The terminals of a battery are connected across...Ch. 21 - Prob. 9OQCh. 21 - Two conducting wires A and B of the same length...Ch. 21 - When resistors with different resistances are...Ch. 21 - When operating on a 120-V circuit, an electric...Ch. 21 - Prob. 13OQCh. 21 - Prob. 14OQCh. 21 - In the circuit shown in Figure OQ21.15, each...Ch. 21 - Prob. 1CQCh. 21 - Prob. 2CQCh. 21 - Prob. 3CQCh. 21 - Referring to Figure CQ21.4, describe what happens...Ch. 21 - When the potential difference across a certain...Ch. 21 - Use the atomic theory of matter to explain why the...Ch. 21 - Prob. 7CQCh. 21 - (a) What advantage does 120-V operation offer over...Ch. 21 - Prob. 9CQCh. 21 - Prob. 10CQCh. 21 - If you were to design an electric heater using...Ch. 21 - Prob. 12CQCh. 21 - Prob. 13CQCh. 21 - Prob. 14CQCh. 21 - Why is it possible for a bird to sit on a...Ch. 21 - Prob. 1PCh. 21 - Prob. 2PCh. 21 - The quantity of charge q (in coulombs) that has...Ch. 21 - Prob. 4PCh. 21 - Prob. 5PCh. 21 - Figure P21.6 represents a section of a conductor...Ch. 21 - Prob. 7PCh. 21 - A 0.900-V potential difference is maintained...Ch. 21 - Prob. 9PCh. 21 - A lightbulb has a resistance of 240 when...Ch. 21 - Prob. 11PCh. 21 - Prob. 12PCh. 21 - While taking photographs in Death Valley on a day...Ch. 21 - Prob. 14PCh. 21 - If the current carried by a conductor is doubled,...Ch. 21 - Prob. 16PCh. 21 - Prob. 17PCh. 21 - Prob. 18PCh. 21 - Prob. 19PCh. 21 - Prob. 20PCh. 21 - Prob. 21PCh. 21 - Prob. 22PCh. 21 - Prob. 23PCh. 21 - Prob. 24PCh. 21 - A 100-W lightbulb connected to a 120-V source...Ch. 21 - Prob. 26PCh. 21 - Prob. 27PCh. 21 - Prob. 28PCh. 21 - A toaster is rated at 600 W when connected to a...Ch. 21 - Prob. 30PCh. 21 - Prob. 31PCh. 21 - Review. A well-insulated electric water heater...Ch. 21 - A battery has an emf of 15.0 V. The terminal...Ch. 21 - Two 1.50-V batterieswith their positive terminals...Ch. 21 - An automobile battery has an emf of 12.6 V and an...Ch. 21 - Prob. 36PCh. 21 - Prob. 37PCh. 21 - Prob. 38PCh. 21 - Consider the circuit shown in Figure P21.39. Find...Ch. 21 - Four resistors are connected to a battery as shown...Ch. 21 - Three 100- resistors are connected as shown in...Ch. 21 - Prob. 42PCh. 21 - Calculate the power delivered to each resistor in...Ch. 21 - Prob. 44PCh. 21 - The ammeter shown in Figure P21.45 reads 2.00 A....Ch. 21 - Prob. 46PCh. 21 - The circuit shown in Figure P21.47 is connected...Ch. 21 - In Figure P21.47, show how to add just enough...Ch. 21 - Taking R = 1.00 k and = 250 V in Figure P21.49,...Ch. 21 - For the circuit shown in Figure P21.50, we wish to...Ch. 21 - In the circuit of Figure P21.51, determine (a) the...Ch. 21 - Jumper cables are connected from a fresh battery...Ch. 21 - Prob. 53PCh. 21 - Prob. 54PCh. 21 - Prob. 55PCh. 21 - Prob. 56PCh. 21 - In the circuit of Figure P21.57, the switch S has...Ch. 21 - Prob. 58PCh. 21 - The circuit in Figure P21.59 has been connected...Ch. 21 - Assume that global lightning on the Earth...Ch. 21 - Prob. 61PCh. 21 - Prob. 62PCh. 21 - Prob. 63PCh. 21 - Prob. 64PCh. 21 - Prob. 65PCh. 21 - An oceanographer is studying how the ion...Ch. 21 - The values of the components in a simple series RC...Ch. 21 - Prob. 68PCh. 21 - Prob. 69PCh. 21 - Prob. 70PCh. 21 - The student engineer of a campus radio station...Ch. 21 - Prob. 72PCh. 21 - A battery has an emf and internal resistance r. A...Ch. 21 - Prob. 74PCh. 21 - Prob. 75PCh. 21 - Prob. 76PCh. 21 - Prob. 77P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The terminals of a battery are connected across two resistors in parallel. The resistances of the resistors are not the same. Which of the following statements is correct? Choose all that are correct. (a) The resistor with the larger resistance carries more current than the other resistor. (b) The resistor with the larger resistance carries less current than the other resistor. (c) The potential difference across each resistor is the same. (d) The potential difference across the larger resistor is greater than the potential difference across the smaller resistor. (e) The potential difference is greater across the resistor closer to the battery.arrow_forwardWhen resistors with different resistances are connected in parallel, which of the following must be the same for each resistor? Choose all correct answers, (a) potential difference (b) current (c) power delivered (d) charge entering each resistor in a given time interval (e) none of those answersarrow_forwardA battery with an internal resistance of 10.0 produces an open circuit voltage of 12.0 V. A variable load resistance with a range from 0 to 30.0 is connected across the battery. (Note: A battery has a resistance that depends on the condition of its chemicals and that increases as the battery ages. This internal resistance can be represented in a simple circuit diagram as a resistor in series with the battery.) (a) Graph the power dissipated in the load resistor as a function of the load resistance. (b) With your graph, demonstrate the following important theorem: The power delivered to a load is a maximum if the load resistance equals the internal resistance of the source.arrow_forward
- Consider the circuit shown in Figure P20.52, where C1 = 6.00 F, C2 = 3.00 F, and V = 20.0 V. Capacitor C1 is first charged by closing switch S1. Switch S1 is then opened, and the charged capacitor is connected to the uncharged capacitor by closing S2. Calculate (a) the initial charge acquired by C1 and (b) the final charge on each capacitor. Figure P20.52arrow_forwardAn electric eel generates electric currents through its highly specialized Hunters organ, in which thousands of disk-shaped cells called electrocytes are lined up in series, very much in the same way batteries are lined up inside a flashlight. When activated, each electrocyte can maintain a potential difference of about 150 mV at a current of 1.0 A for about 2.0 ms. Suppose a grown electric eel has 4.0 103 electrocytes and can deliver up to 3.00 102 shocks in rapid series over about 1.0 s. (a) What maximum electrical power can an electric eel generate? (b) Approximately how much energy does it release in one shock? (c) How high would a mass of 1.0 kg have to be lifted so that its gravitational potential energy equals the energy released in 3.00 102 such shocks?arrow_forwardThe terminals of a battery are connected across two resistors in series. The resistances of the resistors are not the same. Which of the following statements are correct? Choose all that are correct. (a) The resistor with the smaller resistance carries more current than the other resistor. (b) The resistor with the larger resistance carries less current than the other resistor. (c) The current in each resistor is the same. (d) The potential difference across each resistor is the same. (e) The potential difference is greatest across the resistor closest to the positive terminal.arrow_forward
- The immediate cause of many deaths is ventricular fibrillation, an uncoordinated quivering of the heart, as opposed to proper beating. An electric shock to the chest can cause momentary paralysis of the heart muscle, after which the heart will sometimes start organized beating again. A defibrillator is a device that applies a strong electric shock to the chest over a time of a few milliseconds. The device contains a capacitor of a few microfarads, charged to several thousand volts. Electrodes called paddles, about 8 cm across and coated with conducting paste, are held against the chest on both sides of the heart. Their handles are insulated to prevent injury to the operator, who calls Clear! and pushes a button on one paddle to discharge the capacitor through the patient's chest Assume an energy of 3.00 102 W s is to be delivered from a 30.0-F capacitor. To what potential difference must it be charged?arrow_forwardWhen resistors with different resistances are connected in series, which of the following must be the same for each resistor? Choose all correct answers. (a) potential difference (b) current (c) power delivered (d) charge entering each resistor in a given time interval (e) none of those answersarrow_forwardConsider the circuit shown in Figure P26.24, where C1, = 6.00 F, C2 = 3.00 F. and V = 20.0 V. Capacitor C1 is first charged by closing switch S1. Switch S1 is then opened, and the charged capacitor is connected to the uncharged capacitor by closing Calculate (a) the initial charge acquired by C, and (b) the final charge on each capacitor.arrow_forward
- When resistors with different resistances are connected in series, which of the following must be the same for each resistor? Choose all correct answers, (a) potential difference (b) current (c) power delivered (d) charge entering each resistor in a given lime interval (e) none of those answersarrow_forwardA battery with = 6.00 V and no internal resistance supplies current to the circuit shown in Figure P27.9. When the double-throw switch S is open as shown in the figure, the current in the battery is 1.00 mA. When the switch is closed in position a, the current in the battery is 1.20 mA. When the switch is closed in position b, the current in the battery is 2.00 mA. Find the resistances (a) R1, (b) R2, and (c) R3. Figure P27.9 Problems 9 and 10.arrow_forwardThree identical 60.0-W, 120-V lightbulbs are connected across a 120-V power source as shown in Figure P28.72. Assuming the resistance of each lightbulb is constant (even though in reality the resistance might increase markedly with current), find (a) the total power supplied by the power source and (b) the potential difference across each lightbulb.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Series & Parallel - Potential Divider Circuits - GCSE & A-level Physics; Author: Science Shorts;https://www.youtube.com/watch?v=vf8HVTVvsdw;License: Standard YouTube License, CC-BY