Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 5P
For a turning operation, you have selected a high-speed steel (HSS) tool and turning a hot rolled free machining steel,
- What speed and feed would you select for this job?
- Using a speed of 105 sfpm and a feed of 0.015, calculate the spindle rpm for this operation.
- Calculate the metal removal rate.
- Calculate the cutting time for the operation with a length of cut of 4 in. and 0.10-in. allowance.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The outside diameter of a cylinder made of steel is to be turned. The starting diameter is 120 mm and the length is 1400 mm. The feed is 0.3 mm/rev and the depth of cut is 2.5mm. The cut will be made with a cemented carbide cutting tool whose Taylor tool life parameters are: n= 0.33 and C=500. Units for the Taylor equation are min for tool life and m/min for cutting speed. Compute the cutting speed that will allow the tool life to be just equal to the cutting time required to complete this turning operation.
Find the machining time required to turn a mild steel rod from 65mm to 58
mm over a length of 100 mm by using a carbide insert. If the approach length
and over run length is taken as 5 mm, Cutting speed as 20 m/min and feed is
=0.2 mm/rev, and the depth of cut is 0.5mm
A turning operation is performed on C1008 steel (a ductile steel) using a tool with a nose radius= 1.3 mm. Cutting speed = 61 m/min and feed = 0.27 mm/rev. Compute an estimate of the surface roughness in this operation. (Hint: the ratio of actual to ideal roughness
can be read on the figure below)
Equations used;
Ra
Ri
Actual
Ratio Theoretical
32NR
= rai Ri
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0
Ductile metals
Cast irons
Free machining alloys.
100
30.5
200
Cutting speed-ft/min
61
Cutting speed - m/min
300
91.5
400
122
Chapter 21 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 21 - Why has the metal-cutting process resisted...Ch. 21 - What variables must be considered in understanding...Ch. 21 - Which of the seven basic chip formation processes...Ch. 21 - How is feed related to speed in the machining...Ch. 21 - Before you select speed and feed for a machining...Ch. 21 - Milling has two feeds. What are they, and which...Ch. 21 - What is the fundamental mechanism of chip...Ch. 21 - What is the difference between oblique machining...Ch. 21 - What are the implications of Figure 21.13, given...Ch. 21 - Note that the units for the approximate equation...
Ch. 21 - For orthogonal machining, the cutting edge radius...Ch. 21 - How do the magnitude of the strain and strain rate...Ch. 21 - Why is titanium such a difficult metal to machine?...Ch. 21 - Explain why you get segmented or discontinuous...Ch. 21 - Why is metal cutting shear stress such an...Ch. 21 - Which of the three cutting forces in oblique...Ch. 21 - How is the energy in a machining process typically...Ch. 21 - Where does the energy consumed in metal cutting...Ch. 21 - What are two ways of estimating the primary...Ch. 21 - What are the three different ways to perform...Ch. 21 - Why does the cutting force Fc increase with...Ch. 21 - Why doesnt the cutting force Fc increase with...Ch. 21 - Prob. 23RQCh. 21 - How does the selection of the machining parameters...Ch. 21 - Suppose you had a machining operation (boring)...Ch. 21 - Make a sketch like that shown in Figure 21.1 with...Ch. 21 - Show how you would do near orthogonal machining in...Ch. 21 - Can you do orthogonal machining on a shaper or...Ch. 21 - What process and material combination would yield...Ch. 21 - What is meant by the statement that machining...Ch. 21 - Prob. 31RQCh. 21 - Figure 21.4 provides suggested cutting speeds and...Ch. 21 - For problem 1, suppose you selected a speed of 145...Ch. 21 - If the cutting forces is 1000 lb calculate the...Ch. 21 - Explain how you would estimate the cutting force...Ch. 21 - For a turning operation, you have selected a...Ch. 21 - For a slab milling operation using a...Ch. 21 - The power required to machine metal is related to...Ch. 21 - In order to drill a hole in the material described...Ch. 21 - Suppose you have the data in Table 21.A obtained...Ch. 21 - Calculate the horsepower that a process is going...Ch. 21 - Explain how you would estimate the cutting force...Ch. 21 - Derive equations for F and N using the circular...Ch. 21 - Prob. 14PCh. 21 - Prob. 15PCh. 21 - A manufacturing engineer needs an estimate of the...Ch. 21 - Using Figure 21.4 for input data, determine the...Ch. 21 - Estimate the horsepower needed to remove metal at...Ch. 21 - For a turning process, the horsepower required was...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
The forces developed in each cable for equilibrium.
Engineering Mechanics: Statics & Dynamics (14th Edition)
The 50-mm-diameter cylinder is made from Am 1004-T61 magnesium and is placed in the clamp when the temperature ...
Mechanics of Materials (10th Edition)
Determine the components of reaction at A and the tension in the cable needed to hold the rod in equilibrium.
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Overhead fans (Casablanca fans) are often reversed in the wintertime to give air flow in a reversed direction t...
Heating Ventilating and Air Conditioning: Analysis and Design
An experiment is designed to study microscale forced convection. Water at Tm,i=300K is to be heated in a straig...
Fundamentals of Heat and Mass Transfer
59. A 100-watt [W] motor (60% efficient) is used to raise a 100-kilogram [kg] toad 5 meters [m] into the air. H...
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- i need the answer quicklyarrow_forwardNonearrow_forwardIn orthogonal turning of a low carbon steel bar of diameter 150 mm with uncoated carbide tool. the cutting velocity is 90 m/min The feed is 0.24 mm/rev and the depth of cut is 2 mm. The chip thickness obtained is 0.48 mm If the orthogonal rake angle is zero and the principal cutting edge angle is 90° Calculate the shear angle in degree.arrow_forward
- A shaper is operated at 120 cutting strokes per minute and is used to machine a work piece of 250 mm in length and 120 mm wide. Use a feed of 0.6 mm per stroke and a depth of cut of 6 mm. Calculate the total machining time to for machining the component. If the forward stroke is completed in 230°, calculate the percentage of the time when the tool is not contacting the work piece.arrow_forwardIn a production turning operation, the workpart is 60 mm in diameter and 500 mm long. A feed of 0.75 mm/rev is used in the operation. If cutting speed=9 m/s, the tool must be changed every 4 workparts; But if cutting speed=5 m/s, the tool can be used to produce 50 pieces between tool changes. Determine the Taylor tool life equation for this job. (use the equations given below for solution)arrow_forwardA turning operation is performed on C1008 steel (a ductile steel) using a tool with a nose radius = 1.3 mm. Cutting speed = 61 m/min and feed = 0.27 mm/rev. Compute an estimate of the surface roughness in this operation. (Hint: the ratio of actual to ideal roughness can be read on the figure below) Equations used R₁ = f² 32NR Ra = rai Ri Actual Theoretical Ratio= 2.4 2.2 2.0 1.8 1.4 1.2 1.0 0 Ductile metals Cast irons Free machining alloys 100 I 30.5 200 Cutting speed-ft/min I 61 300 91.5 Cutting speed - m/min T 400 I 122arrow_forward
- Q1. Calculate the time required to machine a workpiece 170 mm long, 60 mm diameter to 165 mm long 50 mm diameter. The workpiece rotates at 440 rpm, feed is 0.3 mm/rev and maximum depth of cut is 2 mm. Assume total approach and overtravel distance as 5 mm for turning operation. Answer Q2. A gray cast iron surface 280 wide and 540mm long may be machined either on a vertical milling machine, using a 100mm - diameter face mill having eight inserted HSS teeth, or on a horizontal milling machine using an HSS slab mill with eight teeth on a 200-mm. diameter. Which machine has the faster cutting time? The values of feed per tooth and cutting speed for both processes are 0.4mm/tooth and 80m/min, respectively. The depth of cut = 3.0 mm and assume A and O equal to 5. Answerarrow_forwardNote: Read the question carefully and give me right solutions according to the question. In orthogonal cutting of steel tube of 150 mm diameter and 2 mm thick, the cutting force was 130 kg and feed force was 35 kg for chip thickness of 0.3mm. The orthogonal cut was taken at 60 meter per minute with a feed of 0.14 mm/rev. If the back rack angle of the cutting tool was - 8 o (minus 8 degree), then calculate the shear strain and strain energy per unit volume.arrow_forwardAn external turning operation is performed on a hollow workpiece of 200 mm external diameter and 100 mm inner diameter, at 40 m/min cutting speed, 2 mm depth of cut and 0.20 mm/rev feed. Calculate: The rotational speed for this workpiece. The machining time needed for a length of 250 mm. The material removal rate used. The parting-off time needed if the cross feed is 0.1 mm/rev. The expected tool life if the constants in Taylor Formula are n=0.23 and C= 240. The maximum number of work pieces that could be produced under the given cutting conditions, before the tool needs re-sharpening.arrow_forward
- In an orthogonal cutting operation an 8 mm deep groove is to be turned on a 50 mm diameter steel bar. Spindle speed is 300 rpm and a feed rate of 0.25 mm/rev is given to the tool. Produced chips have a width of 2 mm. Calculate the material removal rate at the beginning and at the end of the cut. Can u help me please?arrow_forwardHow much machining time required to turn a mild steel rod from 65mm to 58 mm over a length of 100 mm by turning using a carbide insert. If the approach length and over run length is = 5 mm, Cutting speed is 20 m/min and feed is =0.2 mm/rev, and the depth of cut is 0.5mm Darrow_forwardi need the answer quicklyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Most Common Metal Machining Processes (Metal Machining Video 1); Author: Sofeast Ltd;https://www.youtube.com/watch?v=uxVJ3qtezGw;License: Standard YouTube License, CC-BY
Machining process and Machine Tools; Author: Amar Gandhi;https://www.youtube.com/watch?v=X2mUJ8baaE0;License: Standard Youtube License