(a)
The entropy rise of the entire system.
(a)
Answer to Problem 43AP
The entropy rise of the entire system is
Explanation of Solution
Given info: The mass of the athlete and the water is
Write the expression to calculate the change in entropy of the system.
Here,
Write the expression to calculate the change in entropy of water.
Here,
Write the expression to convert the temperature from Fahrenheit to Kelvin.
Substitute
Thus, the temperature of body in Kelvin is
Substitute
Thus, the temperature of water in Kelvin is
Substitute
Integrate the above expression from the limit of
Write the expression to calculate the change in entropy of water.
Here,
Substitute
Substitute
Thus, the entropy rise of the entire system is
Conclusion:
Therefore, the entropy rise of the entire system is
(b)
The athlete’s temperature after she drinks the cold water.
(b)
Answer to Problem 43AP
The final temperature of the body is
Explanation of Solution
Given info: The mass of the athlete and the water is
Write the expression of heat balance equation.
Here,
Substitute
Conclusion:
Therefore, the final temperature of the body is
(c)
The entropy rise of the entire system.
(c)
Answer to Problem 43AP
The entropy rise of the entire system is
Explanation of Solution
Given info: The mass of the athlete and the water is
Write the expression to calculate the change in entropy of the system.
Write the expression to calculate the change in entropy of water.
Integrate the above expression from the limit of
Substitute
Write the expression to calculate the change in entropy of body.
Here,
Integrate the above expression from the limit of
Substitute
Substitute
`
Thus, the entropy rise of the entire system is
Conclusion:
Therefore, the entropy rise of the entire system is
(d)
The result by comparing the part (a) and (c).
(d)
Answer to Problem 43AP
The change in entropy in part (c) is less than that of part (a) by less than 1%.
Explanation of Solution
Given info: The mass of the athlete and the water is
The percentage change in entropy is,
Thus the change in entropy in part (c) is less than that of part (a) by less than 1%.
Conclusion:
Therefore, the change in entropy in part (c) is less than that of part (a) by less than 1%.
Want to see more full solutions like this?
Chapter 21 Solutions
Physics for Scientists and Engineers with Modern Physics
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- look at answer show all work step by steparrow_forwardLook at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning