You are working on a summer job at a company that designs non-traditional energy systems. The company is working on a proposed electric power plant that would make use of the temperature gradient in the ocean. The system includes a
Want to see the full answer?
Check out a sample textbook solutionChapter 21 Solutions
Physics for Scientists and Engineers with Modern Physics
Additional Science Textbook Solutions
Chemistry: Structure and Properties (2nd Edition)
Microbiology with Diseases by Body System (5th Edition)
General, Organic, and Biological Chemistry - 4th edition
SEELEY'S ANATOMY+PHYSIOLOGY
Biology: Life on Earth with Physiology (11th Edition)
Cosmic Perspective Fundamentals
- A thermal engine produces 4 MJ of electrical energy while operating between two thermal baths of different temperatures. The working substance of the engine discharges 5 MJ of heat to the cold temperature bath. What is the efficiency of the engine?arrow_forwardThe surface waters of tropical oceans are at a temperature of 27°C while water at a depth of 1200 m is at 3°C. It has been suggested these warm and cold waters could be the energy reservoirs for a heat engine, allowing us to do work or generate electricity from the thermal energy of the ocean. What is the maximum efficiency possible of such a heat engine?arrow_forwardWater near the surface of a tropical ocean has a temperature of 298.2 K (25.0°C), while water 700 m beneath the surface has a temperature of 280.2 K (7.0 °C). It has been proposed that the warm water be used as the hot reservoir and the cool water as the cold reservoir of a heat engine. Find the maximum possible efficiency for such an engine.arrow_forward
- A freezer has a coefficient of performance of 6.30. The freezer is advertised as using 457 kW-h/y. (a) On average, how much energy does the freezer use in a single day? (b) On average, how much thermal energy is removed from the freezer each day? (c) What maximum mass of water at 20.0°C could the freezer freeze in a single day? Note: One kilowatt-hour (kW-h) is an amount of energy equal to operating a 1-kW appliance for one hour.arrow_forwardIceland has both high geothermal activity, with high temperatures near the surface, and abundant cold surface water. Iceland has many power plants that take advantage of the proximity of these natural hot and cold reservoirs. One plant uses an underground source at 122°C as the hot reservoir and a nearby lake at 5°C as the cold reservoir. The plant draws 16 MW from the hot reservoir to produce 1.8 MW of electricity. How does the actual efficiency ofthe plant compare to the theoretical maximum efficiency?arrow_forwardYou are hired to build a geothermal power plant that absorbs heat from a hot water spring and discards heat into the surrounding air, which is at a temperature of 17°. The plant is designed for a maximum (Carnot) efficiency of 0.21. What is the temperature, in degrees Celsius, of the hot water gushing from the spring? If the rate of energy supplied to the plant by the hot-water source is 4.6 kW, what is the plant’s maximum rate of power output, in kilowatts?arrow_forward
- A coal-fired power station is a huge heat engine. It uses heat transfer from burning coal to do work to turn turbines, which are used to generate electricity. In a single day, a large coal power station has 2.50×1014 J of heat transfer from coal and 1.48×1014 J of heat transfer into the environment. (a) What is the work done by the power station? (b) What is the efficiency of the power station?(c) In the combustion process, the following chemical reaction occurs: C + O2 → CO2 .This implies that every 12 kg of coal puts 12 kg + 16 kg + 16 kg = 44 kg of carbon dioxide into the atmosphere. Assuming that 1 kg of coal can provide 2.5×106 J of heat transfer upon combustion, how much CO2 is emitted per day by this power plant?arrow_forwardA newly proposed device for generating electricity from the sun is a heat engine in which the hot reservoir is created by focusing sunlight on a small spot on one side of the engine. The cold reservoir is ambient air at 20°C. The designer claims that the efficiency will be 60%. What minimum hot-reservoirtemperature, in °C, would be required to produce this efficiency?arrow_forwardA homeowner is trying to decide between a highefficiency natural gas furnace with an efficiency of 97 percent and a ground-source heat pump with a COP of 3.5. The unit costs of electricity and natural gas are $0.115/kWh and $1.42/therm (1 therm = 105,500 kJ). Determine which system will have a lower energy cost.arrow_forward
- As a gasoline engine is running, the amount of gasoline containing 15,000J of chemical potential energy is burned in 1 s. During that second, the engine does 3,000J of work. The burning gasoline has a temperature of about 2500 K. The waste heat from the engine flows into the air at about 300 K. What is the Carnot efficiency of a heat engine operating between these two temperatures?arrow_forwardA water treatment plant has three flocculation compartments that water flows though sequentially (in series). The water is gently mixed in each compartment with rotating paddles, and the power input decreases as water moves through each compartment: Compartment #1: 186 W; Compartment #2: 30.0 W; Compartment #3: 7.50 W. Each compartment is 4.17 m deep, 3.75 m wide, and 4.17 m long. The water temperature is 15 °C the flow rate is 16,000 m3/day. Calculate the velocity gradient for each compartment.arrow_forwardOne of the most efficient engines ever built is a coal-fired steam turbine engine in the Ohio River valley, driving an electric generator as it operates between 1870°C and 430°C. (a) What is its maximum theoretical efficiency? (b) Its actual efficiency is 42.0%. How much mechanical power does the engine deliver if it absorbs 1.40 x 105 J of energy each second from the hot reservoir.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning