Concept explainers
Interpret This problem involves applying Gauss's law to find the electric flux through a sphere that encloses a given charge.
Develop Gauss's law (liquation 21.3) states that the electric flux through a closed surface is proportional to the charge enclosed. Specifically,
so given qenclosed, we can find
Evaluate The electric flux is
28. A 6.8-μC charge and a −4.7-μC charge are inside an uncharged sphere. What's the electric flux through the sphere?
Want to see the full answer?
Check out a sample textbook solutionChapter 21 Solutions
Essential University Physics (3rd Edition)
Additional Science Textbook Solutions
Conceptual Physics (12th Edition)
Cosmic Perspective Fundamentals
Applied Physics (11th Edition)
Introduction to Electrodynamics
Conceptual Physical Science (6th Edition)
- A dosed surface with dimensions a = b= 0.400 111 and c = 0.600 in is located as shown in Figure 124.63. The left edge of the closed surface is located at position x = a. The electric field throughout the region is non- uniform and is given by E = (3.00 + 2.00x2)i N/C, where x is in meters. (a) Calculate the net electric flux leaving the closed surface. (b) What net charge enclosed by the surface?arrow_forwardThe nonuniform charge density of a solid insulating sphere of radius R is given by = cr2 (r R), where c is a positive constant and r is the radial distance from the center of the sphere. For a spherical shell of radius r and thickness dr, the volume element dV = 4r2dr. a. What is the magnitude of the electric field outside the sphere (r R)? b. What is the magnitude of the electric field inside the sphere (r R)?arrow_forwardA long cylinder of copper of radius 3 cm is charged so that it has a uniform charge per unit length on its surface of 3 C/m. (a) Find the electric field inside and outside the cylinder. (b) Draw electric field lines in a plane perpendicular to the rod.arrow_forward
- A solid, insulating sphere of radius a has a uniform charge density throughout its volume and a total charge Q. Concentric with this sphere is an uncharged, conducting, hollow sphere whose inner and outer radii are b and c as shown in Figure P19.75. We wish to understand completely the charges and electric fields at all locations. (a) Find the charge contained within a sphere of radius r a. (b) From this value, find the magnitude of the electric field for r a. (c) What charge is contained within a sphere of radius r when a r b? (d) From this value, find the magnitude of the electric field for r when a r b. (e) Now consider r when b r c. What is the magnitude of the electric field for this range of values of r? (f) From this value, what must be the charge on the inner surface of the hollow sphere? (g) From part (f), what must be the charge on the outer surface of the hollow sphere? (h) Consider the three spherical surfaces of radii a, b, and c. Which of these surfaces has the largest magnitude of surface charge density?arrow_forwardTwo infinite, nonconducting sheets of charge are parallel to each other as shown in Figure P19.73. The sheet on the left has a uniform surface charge density , and the one on the right hits a uniform charge density . Calculate the electric field at points (a) to the left of, (b) in between, and (c) to the right of the two sheets. (d) What If? Find the electric fields in all three regions if both sheets have positive uniform surface charge densities of value .arrow_forwardA long, straight wire is surrounded by a hollow metal cylinder whose axis coincides with that of the wire. The wire has a charge per unit length of , and the cylinder has a net charge per unit length of 2. From this information, use Gausss law to find (a) the charge per unit length on the inner surface of the cylinder, (b) the charge per unit length on the outer surface of the cylinder, and (c) the electric field outside the cylinder a distance r from the axis.arrow_forward
- A charge of q = 2.00 109 G is spread evenly on a thin metal disk of radius 0.200 m. (a) Calculate the charge density on the disk. (b) Find the magnitude of the electric field just above the center of the disk, neglecting edge effects and assuming a uniform distribution of charge.arrow_forwardThe surface charge density on a long straight metallic pipe is . What is the electric field outside and inside the pipe? Assume the pipe has a diameter of 2a.arrow_forwardTwo solid spheres, both of radius 5 cm, carry identical total charges of 2 C. Sphere A is a good conductor. Sphere B is an insulator, and its charge is distributed uniformly throughout its volume. (i) How do the magnitudes of the electric fields they separately create at a radial distance of 6 cm compare? (a) EA EB = 0 (b) EA EB 0 (c) EA = EB 0 (d) 0 EA EB (e) 0 = EA EB (ii) How do the magnitudes of the electric fields they separately create at radius 4 cm compare? Choose from the same possibilities as in part (i).arrow_forward
- An infinitely long line charge having a uniform charge per unit length lies a distance d from point O as shown in Figure P24.17. Determine the total electric flux through the surface of a sphere of radius R centered at O resulting from this line charge. Consider both cases, where (a) R d and (b) R d.arrow_forwardIn which of the following contexts can Gausss law not be readily applied to find the electric field? (a) near a long, uniformly charged wire (b) above a large, uniformly charged plane (c) inside a uniformly charged ball (d) outside a uniformly charged sphere (e) Gausss law can be readily applied to find the electric field in all these contexts.arrow_forwardAssume the magnitude of the electric field on each face of the cube of edge L = 1.00 m in Figure P23.32 is uniform and the directions of the fields on each face are as indicated. Find (a) the net electric flux through the cube and (b) the net charge inside the cube. (c) Could the net charge he a single point charge? Figure P23.32arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning