Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 31E
A solid sphere 25 cm in radius carries 14μC, distributed uniformly throughout its volume. Find the electric field strength (a) 15 cm. (b) 25 cm, and (c) 50 cm from its center.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A solid cylinder has radius 7.77 m and height 7.06 m. If the total charge equally
distributed throughout the volume of the cylinder is 15.75 nC, determine the
magnitude of the electric field, in volts per meter, 3.24 m radially away from the axis
of the cylinder. Express your answers accurate to four decimal places.
A solid conducting sphere, which has a charge Q, =28Q and radius ra = 2.2R is placed inside a very thin
spherical shell of radius rp = 6.7R and charge Q2 =14Q as shown in the figure below.
Q2
ra
Find the magnitude of the electric field at r=3.3. Express your answer using one decimal point in units
of k
where k =
4περ
A solid sphere of radius 40.0 cm has a total positive charge of 26.0 μC uniformly distributed throughout its volume. Calculate the magnitude of the electric field (a) 0 cm, (b) 10.0 cm, (c) 40.0 cm, and (d) 60.0 cm from the center of the sphere.
Chapter 21 Solutions
Essential University Physics (3rd Edition)
Ch. 21.1 - Which figure represents the electric field of a...Ch. 21.2 - The figure shows a cube of side s in a uniform...Ch. 21.3 - A spherical surface surrounds an isolated positive...Ch. 21.4 - A spherical shell carries charge Q distributed...Ch. 21.5 - (1) If you're close to a finite line of charge...Ch. 21.6 - (1) If you're close to a finite line of charge...Ch. 21 - Can electric field lines ever cross? Why or why...Ch. 21 - The electric flux through a closed surface is...Ch. 21 - If the flux of the gravitational field through a...Ch. 21 - Under what conditions can the electric flux...
Ch. 21 - Right field lines emerge from a closed surface...Ch. 21 - If a charged particle were released from rest on a...Ch. 21 - In Gausss law, EdA=q0does the field E necessarily...Ch. 21 - In a certain region the electric field points to...Ch. 21 - A point charge is located a fixed distance outside...Ch. 21 - The field of an infinite charged line decreases as...Ch. 21 - Why cant you use Gausss law to determine the field...Ch. 21 - Youre sitting inside an uncharged, hollow...Ch. 21 - Does Gausss law apply to a spherical Gaussian...Ch. 21 - An insulating sphere carries charge spread...Ch. 21 - Why must the electric field be zero inside a...Ch. 21 - The electric field of a flat sheet of charge is...Ch. 21 - In Fig. 21.32, the magnitude of the middle charge...Ch. 21 - Charges +2q and q are near each other. Sketch some...Ch. 21 - The net charge shown in Fig. 21.33 is +Q. Identify...Ch. 21 - A flat surface with area 2.0 m2 is in a uniform...Ch. 21 - Whats the electric field strength in a region...Ch. 21 - A flat surface with area 0.14 m2 lies in the x-y...Ch. 21 - The electric field on the surface of a...Ch. 21 - In the figure with GOT IT? 21.2, take E = 1.75...Ch. 21 - In Fig. 21.8, take the half-cylinders radius and...Ch. 21 - A sock comes out of the dryer with a trillion...Ch. 21 - Whats the electric flux through the closed...Ch. 21 - Interpret This problem involves applying Gauss's...Ch. 21 - A 2.6-C charge is at the center of a cube 7.5 cm...Ch. 21 - The electric field at the surface of a...Ch. 21 - A solid sphere 25 cm in radius carries 14C,...Ch. 21 - A 15-nC point charge is at the center of a thin...Ch. 21 - The electric field strength outside a charge...Ch. 21 - An electron close to a large, Hat sheet of charge...Ch. 21 - Find the field produced by a uniformly charged...Ch. 21 - What surface charge density on an infinite sheet...Ch. 21 - A rod 50 cm long and 1.0 cm in radius carries a...Ch. 21 - Whats the approximate field strength 1 cm above a...Ch. 21 - The disk in Fig. 21.22 has area 0.14 m2 and is...Ch. 21 - What is the electric field strength just outside...Ch. 21 - A net charge of 5.0 C is applied on one side of a...Ch. 21 - A positive point charge q lies at the center of a...Ch. 21 - A total charge of 18 C is applied to a thin,...Ch. 21 - Whats the flux through the hemispherical open...Ch. 21 - An electric field is given byE=E0(y/a)k, where E0...Ch. 21 - The electric field in a certain region is given by...Ch. 21 - A study shows that mammalian red blood cells...Ch. 21 - Positive charge is spread uniformly over the...Ch. 21 - A solid sphere 2.0 cm in radius carries a uniform...Ch. 21 - A point charge of 2Q is at the center of a...Ch. 21 - A friend is working on a biology experiment and...Ch. 21 - A spherical shell of radius 15 cm carries 4.8 C...Ch. 21 - A spherical shell 30 cm in diameter carries 85 C...Ch. 21 - A thick, spherical shell of inner radius a and...Ch. 21 - A long, thin wire carrying 5.6 nC/m runs down the...Ch. 21 - An infinitely long rod of radius R carries a...Ch. 21 - A long, solid rod 4.5 cm in radius carries a...Ch. 21 - If you painted positive charge on the floor, what...Ch. 21 - A charged slab extends infinitely in two...Ch. 21 - A solid sphere 10 cm in radius carries a 40-C...Ch. 21 - A nonconducting square plate 75 cm on a side...Ch. 21 - A 250-nC point charge is placed at the center of...Ch. 21 - An irregular conductor containing an irregular,...Ch. 21 - You measure the electric field strength at points...Ch. 21 - A point charge q is at the center of a spherical...Ch. 21 - A point charge q is at the center of a spherical...Ch. 21 - The volume charge density inside a solid sphere of...Ch. 21 - Figure 21.37 shows a rectangular box with sides 2a...Ch. 21 - The charge density within a charged sphere of...Ch. 21 - Calculate the electric fields in Example 21.2...Ch. 21 - A solid sphere of radius R carries a nonuniform...Ch. 21 - Problem 76 of Chapter 13 explored what happened to...Ch. 21 - An infinitely long solid cylinder of radius R...Ch. 21 - A solid sphere of radius R carries a uniform...Ch. 21 - Repeal Problem 59 for the case where the charge...Ch. 21 - Coaxial cables are widely used with audio-visual...Ch. 21 - A coaxial cable carries equal but opposite charges...Ch. 21 - How does the electric field between the conductors...Ch. 21 - Coaxial cables are widely used with audio-visual...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Suppose we found an organism on Earth with the characteristics described. In light of our current understanding...
Life in the Universe (4th Edition)
Two equal masses are attached to separate identical springs next to one another. One mass is pulled so its spri...
Physics for Scientists and Engineers with Modern Physics
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
The density of air when the length of cylinder is doubled.
College Physics: A Strategic Approach (3rd Edition)
Q12.12 During the Great Mississippi Flood of 1993, the levees in St. Louis tended to rupture first at the botto...
University Physics with Modern Physics (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The electric field 10.0 cm from the surface of a copper ball of radius 5.0 cm is directed toward the ball's center and has magnitude 4.0102 N/C. How much charge is on the surface of the ball?arrow_forwardA thick insulating spherical shell of inner radius a=2.1R and outer radius b=9.9R has a uniform charge density p. pR What is the magnitude of the electric field at r=4.5 R ? Express your answer using one decimal place in units ofarrow_forwardA solid conducting sphere, which has a charge Q1 =84Q and radius rg = 1.5R is placed inside a very thin spherical shell of radius rp = 3.4R and charge Q2 =15Q as shown in the figure below. Q2 Tb Q1 ra Find the magnitude of the electric field at r=6.2. Express your answer using one decimal point in units 1 where k = 4περ of karrow_forward
- A solid conducting sphere, which has a charge Q1=38Q and radius ra= 1.3R is placed inside a very thin spherical shell of radius rp = 7.6R and charge Q2 =-10Q as shown in the figure below. Q1 ra Find the magnitude of the electric field at r=4.7. Express your answer using one decimal point in units 1 where k = of k 4πεοarrow_forwardA solid sphere of radius 40.0 cm has a total positive charge of 26.0 mC uniformly distributed throughout its volume. Calculate the magnitude of the electric field (a) 10.0 cm, and (b) 60.0 cm from the center of the sphere.arrow_forwardA charge of −27 μC is distributed uniformly throughout a spherical volume of radius 9.5 cm. Determine the electric field due to this charge at a distance of (a) 2.4 cm, (b) 5.3 cm, and (c) 22 cm from the center of the sphere.arrow_forward
- helparrow_forwardAn isolated very long metallic rod with a uniform circular cross-section of radius 0.55 mm has a constant charge per unit length of 2.25 × 10⁻⁸ C/m. Find the electric field magnitudes at distances (a) 0.25 mm and (b) 0.75 mm, from the longitudinal axis of the rod.arrow_forwardIf a solid conducting sphere of radius 50.0 cm carries a total charge of 150 nC uniformly distributed throughout its volume. Find the (a) charge density of the sphere and (b) the magnitude of the electric field at r = 10 cm.arrow_forward
- A thin rod carries linear charge density according to the distribution X(z) = Aox/L, where Xo = 29.7 nC/cm and L is the length of the rod. The rod extends from x = 0 cm tc I=28 cm. What is the magnitude of the electric field at a location = 6.0 cm? (please provide your answer in kN/C to 1 decimal place) Type your answer.....arrow_forwardConsider the following figure. (If you need to use co or-co, enter INFINITY or -INFINITY, respectively.) (a) (b) 0 -20 +9 5 5 +9 -2q +3q 10 10 +q x (cm) x (cin) -9 (a) Find the total electric field in N/C at x = 8.00 cm in part (b) of the figure above given that q = 1.00 μC. INFINITY ✔ N/C (b) Find the total electric field in N/C at x = 11.50 cm in part (b) of the figure above. (Include the sign of the value in your answer.) INFINITY X N/C (c) If the charges are allowed to move and eventually be brought to rest by friction, what will the final charge configuration be? (That is, will there be a single charge, double charge, etc., and what will its value(s) be? Use the following as necessary: q.)arrow_forwardA thick insulating spherical shell of inner radius a=2.4R and outer radius b=6.1R has a uniform charge density p. pR What is the magnitude of the electric field at r=5.6 R ? Express your answer using one decimal place in units of €oarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY