Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 39E
The disk in Fig. 21.22 has area 0.14 m2 and is uniformly charged to 5.0 μC. Find the approximate field strength (a) 1 mm from the disk, not near the edge, and (b) 2.5 m from the disk.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In deep space, two spheres each of radius 5.00 m are connected by a 3.00 x 102 m nonconducting cord. If a uniformly distributed charge of 35.0 mC resides on the surface of each sphere, calculate the tension in the cord.
Problem 5: A thin rod of length L = 1.9 m lies along the positive y-axis
with one end at the origin. The rod carries a uniformly distributed
charge of Q1 = 5.2 µC. A point charge Q2 = 10.4 uC is located on the
positive x-axis a distance a = 0.45 m from the origin. Refer to the figure.
dy
y
X
a
Part (a) Consider a thin slice of the rod of thickness dy located a distance y away from the origin. What is the direction of
the force on the point charge due to the charge on this thin slice?
MultipleChoice :
1) Along the positive x-axis
2) Above the negative x-axis
3) Below the positive x-axis
4) Not enough information to determine
5) There is no force between the point charge and the slice of the rod
6) Above the positive x-axis
7) Below the negative x-axis
Part (b) Choose the correct equation for x-component of the force, dFx, on the point charge due to the thin slice of the rod.
SchematicChoice :
kQ1Q2ady
Q1Q2ady
kQ,Q2ady dF
dF, =
L(a² + y²)
dFx
3
3
L(a² + y²)ž
L(a² + y²)ž
kQ1Q2ydy
kQ,Qzydy…
The two spherical shell has a charge of q1=0.30nC and q2 = 0.5nC. The radius of r1=7.5cm
and r2 = 2.5cm.
What is the new votage value in volts, after the charge transfer is completed between the two spheres?
Chapter 21 Solutions
Essential University Physics (3rd Edition)
Ch. 21.1 - Which figure represents the electric field of a...Ch. 21.2 - The figure shows a cube of side s in a uniform...Ch. 21.3 - A spherical surface surrounds an isolated positive...Ch. 21.4 - A spherical shell carries charge Q distributed...Ch. 21.5 - (1) If you're close to a finite line of charge...Ch. 21.6 - (1) If you're close to a finite line of charge...Ch. 21 - Can electric field lines ever cross? Why or why...Ch. 21 - The electric flux through a closed surface is...Ch. 21 - If the flux of the gravitational field through a...Ch. 21 - Under what conditions can the electric flux...
Ch. 21 - Right field lines emerge from a closed surface...Ch. 21 - If a charged particle were released from rest on a...Ch. 21 - In Gausss law, EdA=q0does the field E necessarily...Ch. 21 - In a certain region the electric field points to...Ch. 21 - A point charge is located a fixed distance outside...Ch. 21 - The field of an infinite charged line decreases as...Ch. 21 - Why cant you use Gausss law to determine the field...Ch. 21 - Youre sitting inside an uncharged, hollow...Ch. 21 - Does Gausss law apply to a spherical Gaussian...Ch. 21 - An insulating sphere carries charge spread...Ch. 21 - Why must the electric field be zero inside a...Ch. 21 - The electric field of a flat sheet of charge is...Ch. 21 - In Fig. 21.32, the magnitude of the middle charge...Ch. 21 - Charges +2q and q are near each other. Sketch some...Ch. 21 - The net charge shown in Fig. 21.33 is +Q. Identify...Ch. 21 - A flat surface with area 2.0 m2 is in a uniform...Ch. 21 - Whats the electric field strength in a region...Ch. 21 - A flat surface with area 0.14 m2 lies in the x-y...Ch. 21 - The electric field on the surface of a...Ch. 21 - In the figure with GOT IT? 21.2, take E = 1.75...Ch. 21 - In Fig. 21.8, take the half-cylinders radius and...Ch. 21 - A sock comes out of the dryer with a trillion...Ch. 21 - Whats the electric flux through the closed...Ch. 21 - Interpret This problem involves applying Gauss's...Ch. 21 - A 2.6-C charge is at the center of a cube 7.5 cm...Ch. 21 - The electric field at the surface of a...Ch. 21 - A solid sphere 25 cm in radius carries 14C,...Ch. 21 - A 15-nC point charge is at the center of a thin...Ch. 21 - The electric field strength outside a charge...Ch. 21 - An electron close to a large, Hat sheet of charge...Ch. 21 - Find the field produced by a uniformly charged...Ch. 21 - What surface charge density on an infinite sheet...Ch. 21 - A rod 50 cm long and 1.0 cm in radius carries a...Ch. 21 - Whats the approximate field strength 1 cm above a...Ch. 21 - The disk in Fig. 21.22 has area 0.14 m2 and is...Ch. 21 - What is the electric field strength just outside...Ch. 21 - A net charge of 5.0 C is applied on one side of a...Ch. 21 - A positive point charge q lies at the center of a...Ch. 21 - A total charge of 18 C is applied to a thin,...Ch. 21 - Whats the flux through the hemispherical open...Ch. 21 - An electric field is given byE=E0(y/a)k, where E0...Ch. 21 - The electric field in a certain region is given by...Ch. 21 - A study shows that mammalian red blood cells...Ch. 21 - Positive charge is spread uniformly over the...Ch. 21 - A solid sphere 2.0 cm in radius carries a uniform...Ch. 21 - A point charge of 2Q is at the center of a...Ch. 21 - A friend is working on a biology experiment and...Ch. 21 - A spherical shell of radius 15 cm carries 4.8 C...Ch. 21 - A spherical shell 30 cm in diameter carries 85 C...Ch. 21 - A thick, spherical shell of inner radius a and...Ch. 21 - A long, thin wire carrying 5.6 nC/m runs down the...Ch. 21 - An infinitely long rod of radius R carries a...Ch. 21 - A long, solid rod 4.5 cm in radius carries a...Ch. 21 - If you painted positive charge on the floor, what...Ch. 21 - A charged slab extends infinitely in two...Ch. 21 - A solid sphere 10 cm in radius carries a 40-C...Ch. 21 - A nonconducting square plate 75 cm on a side...Ch. 21 - A 250-nC point charge is placed at the center of...Ch. 21 - An irregular conductor containing an irregular,...Ch. 21 - You measure the electric field strength at points...Ch. 21 - A point charge q is at the center of a spherical...Ch. 21 - A point charge q is at the center of a spherical...Ch. 21 - The volume charge density inside a solid sphere of...Ch. 21 - Figure 21.37 shows a rectangular box with sides 2a...Ch. 21 - The charge density within a charged sphere of...Ch. 21 - Calculate the electric fields in Example 21.2...Ch. 21 - A solid sphere of radius R carries a nonuniform...Ch. 21 - Problem 76 of Chapter 13 explored what happened to...Ch. 21 - An infinitely long solid cylinder of radius R...Ch. 21 - A solid sphere of radius R carries a uniform...Ch. 21 - Repeal Problem 59 for the case where the charge...Ch. 21 - Coaxial cables are widely used with audio-visual...Ch. 21 - A coaxial cable carries equal but opposite charges...Ch. 21 - How does the electric field between the conductors...Ch. 21 - Coaxial cables are widely used with audio-visual...
Additional Science Textbook Solutions
Find more solutions based on key concepts
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
A friend says, “It makes no sense that Anna could turn on lights in her hands simultaneously in her frame but t...
Modern Physics
Describe a situation in which the net external force on a system is not zero, yet its speed remains constant.
College Physics
6.25 A sled with mass 12.00 kg moves in a straight line on a friction less, horizontal surface. At one point in...
University Physics with Modern Physics (14th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Problem 12: A uniformly charged rod of length L = 1.4 m lies along the x-axis with its right end at the origin. The rod has a total charge of Q = 8.2 μC. A point P is located on the x-axis a distance a = 1.8 m to the right of the origin. Part (a) Consider a thin slice of the rod of thickness dx located a distance x away from the origin. What is the direction of the electric field at point P due to the charge on this thin slice of the rod? Part (b) Write an equation for the electric field dE at point P due to the thin slide of the rod dx. Give your answers in terms of the variables Q, L, x, a, dx, and the Coulomb constant, k. Notice that the coordinate x will be less than zero over the length of the rod. Part (c) Integrate the electric field contributions from each slice over the length of the rod to write an equation for the net electric field E at point P. Part (d) Calculate the magnitude of the electric field E in kilonewtons per coulomb (kN/C) at point P due to the charged…arrow_forwardY P L 13 In the figure above a nonuniformly charged rod of length L = 4.5 m lies along the x-axis with one end at the origin. The linear charge density (charge per length) is given by A = (3.8 x 10-9) 1.5 (where A has units of C/m when a has units of meters). Point P is located at the origin (the less densely charged end of the rod). What is the total charge on the rod? (This is given by Q = = Jdq= √ Adz.) Lok Ada 22 where What is the magnitude of the electric field at point P? (This will be given by E = A is now a function of a instead of a constant.)arrow_forwardA sphere of radius 20 cm has 70µC uniformly distributed throughout the sphere. How much charge is contained is a sphere of radius 10 cm located at the center of the larger sphere?arrow_forward
- In a spherical metal shell of radius R, an electron is shot from the center directly toward a tiny hole in the shell, through which it escapes. The shell is negatively charged with a surface charge density (charge per unit area) of 6.90 * 10-13 C/m2.What is the magnitude of the electron’s acceleration when it reaches radial distances (a) r = 0.500R and (b) 2.00R?arrow_forwardAs a honeybee flies, the passing air strips electrons from its hairs, giving the bee a net positive charge. Since flowers are negatively charged, pollen then jumps onto a bee even if the bee does not physically touch the pollen particles. (a) Estimate the diameter of the central disk of a daisy. (b) If a bee has had 75,000 electrons stripped by the air, what is its net charge? (c) If this bee lands at the edge of the daisy’s central disk, determine its electric field at the far edge of the disk. Treat the bee as a thin-walled hollow sphere with its net charge distributed uniformly over its surface. (d) A pollen particle requires a force of 10 pN to dislodge from a stamen. Estimate the net charge on a pollen particle at the far end of the disk required for the particle to dislodge and jump to the bee.arrow_forwardA small glass bead charged to 4.5 nC is in the plane that bisects a thin, uniformly charged, 10-cm-long glass rod and is 4.0 cm from the rod's center. The bead is repelled from the rod with a force of 740 μN. What is the total charge of the rod?arrow_forward
- (a) Figure (a) shows a nonconducting rod of length L = 8.00 cm and uniform linear charge density λ = +1.21 pc/m. Take V = 0 at infinity. What is V at point P at distance d = 7.40 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 1.21 pc/m. With V = 0 at infinity, what is V at P? 1/2 L/2- L/2 1/2 - (a) (b)arrow_forwardThe magnitude of the electric field is 75 N/C at a distance of 64 cm from a point charge. What is the magnitude of the charge, in coulombs.arrow_forwardCan you please solve (d) & (e)?arrow_forward
- (a) Figure (a) shows a nonconducting rod of length L = 9.00 cm and uniform linear charge density λ = +7.57 pC/m. Take V = 0 at infinity. What is V at point P at distance d = 5.20 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 7.57 pC/m. With V = 0 at infinity, what is V at P? (a) Number i (b) Number i ·+· -L/2 (a) Units Units L/2 +‡ ‡ ‡+3= L/2 .Р (b) L/2arrow_forward(a) Figure (a) shows a nonconducting rod of length L-5.10 cm and uniform linear charge density = +8.35 pC/m. Take V = 0 at infinity. What is V at point P at distance d = 7.60 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 8.35 pC/m. With V-0 at infinity, what is V at P? P L/2 L/2- (a) L/21/2 (b) (a) Number i Units (b) Number i Unitsarrow_forwardA charge Q= 3nC is uniformly distributed over a ring of radius a = 6 cm. An electron is released from rest at point C, which is 8 cm away from the center O of the ring. Find the speed (in 10° m/s) of the electron as it passes through point O. Hint: me = 9.11x10-3 kg.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY