Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 74P
A solid sphere of radius R carries a uniform volume charge density ρ. A hole of radius R/2 occupies a region from the center to the edge of the sphere, as shown in Fig. 21.38. Show that the electric field everywhere in the hole points horizontally and has magnitude ρR/6ε0. Hint: Treat the hole as a superposition of two charged spheres with opposite charges.
FIGURE 21.38 Problem 74
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A charge of uniform linear density 2.00 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 4.20 cm, outer radius = 9.80 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 14.0 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell?
In the figure a sphere, of radius a = 13.2 cm and charge q = 6.00×10-6 C uniformly distributed throughout its volume, is concentric with a spherical conducting shell of inner radius b = 37.0 cm and outer radius c = 39.0 cm . This shell has a net charge of -q. Find expressions for the electric field, as a function of the radius r, within the sphere and the shell (r< a). Evaluate for r=6.6 cm. Find expressions for the electric field as a function of the radius r, between the sphere and the shell (a< r <b). Evaluate for r=25.1 cm. Find expressions for the electric field as a function of the radius r, inside the shell (b< r <c). Evaluate for r=38.0 cm
Chapter 23, Problem 032
that is a function of radial distance r from the cylinder axis: ρ = AP. For
A long, nonconducting, solid cylinder of radius 4.5 cm has a nonuniform volume charge density
A 1.9 uC/m5, what is the magnitude of the electric field at (a)r 1.8 cm and (b)r- 6.3 cm
(a) Number
(b) Number
Units
Units
Chapter 21 Solutions
Essential University Physics (3rd Edition)
Ch. 21.1 - Which figure represents the electric field of a...Ch. 21.2 - The figure shows a cube of side s in a uniform...Ch. 21.3 - A spherical surface surrounds an isolated positive...Ch. 21.4 - A spherical shell carries charge Q distributed...Ch. 21.5 - (1) If you're close to a finite line of charge...Ch. 21.6 - (1) If you're close to a finite line of charge...Ch. 21 - Can electric field lines ever cross? Why or why...Ch. 21 - The electric flux through a closed surface is...Ch. 21 - If the flux of the gravitational field through a...Ch. 21 - Under what conditions can the electric flux...
Ch. 21 - Right field lines emerge from a closed surface...Ch. 21 - If a charged particle were released from rest on a...Ch. 21 - In Gausss law, EdA=q0does the field E necessarily...Ch. 21 - In a certain region the electric field points to...Ch. 21 - A point charge is located a fixed distance outside...Ch. 21 - The field of an infinite charged line decreases as...Ch. 21 - Why cant you use Gausss law to determine the field...Ch. 21 - Youre sitting inside an uncharged, hollow...Ch. 21 - Does Gausss law apply to a spherical Gaussian...Ch. 21 - An insulating sphere carries charge spread...Ch. 21 - Why must the electric field be zero inside a...Ch. 21 - The electric field of a flat sheet of charge is...Ch. 21 - In Fig. 21.32, the magnitude of the middle charge...Ch. 21 - Charges +2q and q are near each other. Sketch some...Ch. 21 - The net charge shown in Fig. 21.33 is +Q. Identify...Ch. 21 - A flat surface with area 2.0 m2 is in a uniform...Ch. 21 - Whats the electric field strength in a region...Ch. 21 - A flat surface with area 0.14 m2 lies in the x-y...Ch. 21 - The electric field on the surface of a...Ch. 21 - In the figure with GOT IT? 21.2, take E = 1.75...Ch. 21 - In Fig. 21.8, take the half-cylinders radius and...Ch. 21 - A sock comes out of the dryer with a trillion...Ch. 21 - Whats the electric flux through the closed...Ch. 21 - Interpret This problem involves applying Gauss's...Ch. 21 - A 2.6-C charge is at the center of a cube 7.5 cm...Ch. 21 - The electric field at the surface of a...Ch. 21 - A solid sphere 25 cm in radius carries 14C,...Ch. 21 - A 15-nC point charge is at the center of a thin...Ch. 21 - The electric field strength outside a charge...Ch. 21 - An electron close to a large, Hat sheet of charge...Ch. 21 - Find the field produced by a uniformly charged...Ch. 21 - What surface charge density on an infinite sheet...Ch. 21 - A rod 50 cm long and 1.0 cm in radius carries a...Ch. 21 - Whats the approximate field strength 1 cm above a...Ch. 21 - The disk in Fig. 21.22 has area 0.14 m2 and is...Ch. 21 - What is the electric field strength just outside...Ch. 21 - A net charge of 5.0 C is applied on one side of a...Ch. 21 - A positive point charge q lies at the center of a...Ch. 21 - A total charge of 18 C is applied to a thin,...Ch. 21 - Whats the flux through the hemispherical open...Ch. 21 - An electric field is given byE=E0(y/a)k, where E0...Ch. 21 - The electric field in a certain region is given by...Ch. 21 - A study shows that mammalian red blood cells...Ch. 21 - Positive charge is spread uniformly over the...Ch. 21 - A solid sphere 2.0 cm in radius carries a uniform...Ch. 21 - A point charge of 2Q is at the center of a...Ch. 21 - A friend is working on a biology experiment and...Ch. 21 - A spherical shell of radius 15 cm carries 4.8 C...Ch. 21 - A spherical shell 30 cm in diameter carries 85 C...Ch. 21 - A thick, spherical shell of inner radius a and...Ch. 21 - A long, thin wire carrying 5.6 nC/m runs down the...Ch. 21 - An infinitely long rod of radius R carries a...Ch. 21 - A long, solid rod 4.5 cm in radius carries a...Ch. 21 - If you painted positive charge on the floor, what...Ch. 21 - A charged slab extends infinitely in two...Ch. 21 - A solid sphere 10 cm in radius carries a 40-C...Ch. 21 - A nonconducting square plate 75 cm on a side...Ch. 21 - A 250-nC point charge is placed at the center of...Ch. 21 - An irregular conductor containing an irregular,...Ch. 21 - You measure the electric field strength at points...Ch. 21 - A point charge q is at the center of a spherical...Ch. 21 - A point charge q is at the center of a spherical...Ch. 21 - The volume charge density inside a solid sphere of...Ch. 21 - Figure 21.37 shows a rectangular box with sides 2a...Ch. 21 - The charge density within a charged sphere of...Ch. 21 - Calculate the electric fields in Example 21.2...Ch. 21 - A solid sphere of radius R carries a nonuniform...Ch. 21 - Problem 76 of Chapter 13 explored what happened to...Ch. 21 - An infinitely long solid cylinder of radius R...Ch. 21 - A solid sphere of radius R carries a uniform...Ch. 21 - Repeal Problem 59 for the case where the charge...Ch. 21 - Coaxial cables are widely used with audio-visual...Ch. 21 - A coaxial cable carries equal but opposite charges...Ch. 21 - How does the electric field between the conductors...Ch. 21 - Coaxial cables are widely used with audio-visual...
Additional Science Textbook Solutions
Find more solutions based on key concepts
When is your weight equal to mg?
Conceptual Integrated Science
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
The final velocity of the billiard ball.
University Physics Volume 1
In the spaces provided, draw and label vectors to represent the initial momentum, and the change of glider A in...
Tutorials in Introductory Physics
1. How many significant figures does each of the following numbers have?
a. 0.73 b. 7.30 c. 73 d. 0.073
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Assume the magnitude of the electric field on each face of the cube of edge L = 1.00 m in Figure P23.32 is uniform and the directions of the fields on each face are as indicated. Find (a) the net electric flux through the cube and (b) the net charge inside the cube. (c) Could the net charge he a single point charge? Figure P23.32arrow_forwardA solid nonconducting sphere (radius = 12 cm) has a charge of uniform density (8 nC/m3) distributed throughout its volume. Determine the magnitude of the electric field 17 cm from the center of the sphere.arrow_forwardA positively charged particle is held at the center of a spherical shell. The figure gives the magnitude E of the electric field versus radial distance r. The scale of the vertical axis is set by Es = 11.0 × 107 N/C. Approximately, what is the net charge on the shell? Assume rs = 1 cm. Number i E (107 N/C) E 0 Units r's 2rs r (cm) I 3rs 4rs 5rsarrow_forward
- A charge of uniform linear density 2.00 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 4.60 cm, outer radius = 10.6 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 15.2 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell?arrow_forwardA charge of uniform linear density 2.80 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 5.80 cm, outer radius = 9.20 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 15.0 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell? Gaussian cylinder Shell Rod (a) (a) Number i Units (b) Number i Units (c) Number i Unitsarrow_forwardA charge of uniform linear density 2.40 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 5.60 cm, outer radius = 9.20 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 14.8 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell? Gaussian cylinder Shell Rod- (a)arrow_forward
- A charge of uniform linear density 2.80 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 5.20 cm, outer radius = 10.6 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 15.8 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell? Please Helparrow_forwardA charge of uniform linear density 2.60 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 5.00 cm, outer radius = 10.6 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 15.6 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell? Gaussian cylinder- (a) (a) Number i Units (b) Number i Units (c) Number i Unitsarrow_forwardA charge of uniform linear density 2.20 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 5.40 cm, outer radius 10.0 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 15.4 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell? Stell-arrow_forward
- A charge of uniform linear density 2.0 nC/m is distributed along a long, thin, nonconducting rod.The rod is coaxial with a long conducting cylindrical shell (inner radius = 5.0 cm, outer radius = 10 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field 15 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell?arrow_forwardIn the figure a "semi-infinite" nonconducting rod (that is, infinite in one direction only) has uniform linear charge density λ = 3.23 µC/m. Find (including sign) (a) the component of electric field parallel to the rod and (b) the component perpendicular to the rod at point P (R = 32.9 m). R (a) Number i 1.530 Units (b) Number N V i 1.530 Units N >arrow_forwardIn the figure a sphere, of radius a = 14.2 cm and charge q = 1.00×10-5 C uniformly distributed throughout its volume, is concentric with a spherical conducting shell of inner radius b = 48.3 cm and outer radius c = 50.3 cm . This shell has a net charge of -q. a) Find expressions for the electric field, as a function of the radius r, within the sphere and the shell (r < a). Evaluate for r = 7.1 cm. b) Find expressions for the electric field, as a function of the radius r, between the sphere and the shell (a < r < b). Evaluate for r=31.2 cm. c) Find expressions for the electric field, as a function of the radius r, inside the shell (b < r < c). Evaluate for r = 49.3 cm. d) Find expressions for the electric field, as a function of the radius r, outside the shell (r > c). Evaluate for r = 51.3 cm. e) What is the charge on the outer surface of the shell?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY