Organic Chemistry: Principles and Mechanisms (Second Edition)
Organic Chemistry: Principles and Mechanisms (Second Edition)
2nd Edition
ISBN: 9780393663556
Author: Joel Karty
Publisher: W. W. Norton & Company
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 21, Problem 21.89P
Interpretation Introduction

(a)

Interpretation:

How the given synthesis can be carried out is to be suggested.

Concept introduction:

β-Keto esters can be synthesized in a reaction known as Claisen condensation. The α-hydrogen in an carbonyl compound is relatively acidic because of the presence of an adjacent electron withdrawing group. A strong bulky, non-nuclophilic base extracts this proton, resulting in the formation of a carbon nucleophile. The nucleophile attacks and adds to the electrophilic carbon of a carbonyl compound such as an ester to form a tetrahedral intermediate. The elimination of the original alkoxide (acyl) group from this intermediate followed by proton transfers completes the reaction, giving an α-keto ester.

Interpretation Introduction

(a)

Interpretation:

How the given synthesis can be carried out is to be suggested.

Concept introduction:

β-Keto esters can be synthesized in a reaction known as Claisen condensation. The α-hydrogen in an carbonyl compound is relatively acidic because of the presence of an adjacent electron withdrawing group. A strong bulky, non-nuclophilic base extracts this proton, resulting in the formation of a carbon nucleophile. The nucleophile attacks and adds to the electrophilic carbon of a carbonyl compound such as an ester to form a tetrahedral intermediate. The elimination of the original alkoxide (acyl) group from this intermediate followed by proton transfers completes the reaction, giving an α-keto ester.

Blurred answer
Students have asked these similar questions
B. d. a hydrate 4. Give the major organic product(s) for each of the following reactions or sequences of reactions. Show all relevant stereochemistry [4 ONLY]. A. CH₂OH PCC CH2Cl2 0 H KCN HCN 2
Propose a synthesis of the anti-inflammatory drug Ibuprofen from benzene. Show all reagents and all intermediate structures. Assume that ortho and para isomers can be separated. (CH3)2CHCH2 CH3 CHCOOH 1buprofen be required
Assuming that no equilibria other than dissolution are involved, calculate the molar solubility of each of the following from its solubility product: (a) KHC4H4O6

Chapter 21 Solutions

Organic Chemistry: Principles and Mechanisms (Second Edition)

Ch. 21 - Prob. 21.11PCh. 21 - Prob. 21.12PCh. 21 - Prob. 21.13PCh. 21 - Prob. 21.14PCh. 21 - Prob. 21.15PCh. 21 - Prob. 21.16PCh. 21 - Prob. 21.17PCh. 21 - Prob. 21.18PCh. 21 - Prob. 21.19PCh. 21 - Prob. 21.20PCh. 21 - Prob. 21.21PCh. 21 - Prob. 21.22PCh. 21 - Prob. 21.23PCh. 21 - Prob. 21.24PCh. 21 - Prob. 21.25PCh. 21 - Prob. 21.26PCh. 21 - Prob. 21.27PCh. 21 - Prob. 21.28PCh. 21 - Prob. 21.29PCh. 21 - Prob. 21.30PCh. 21 - Prob. 21.31PCh. 21 - Prob. 21.32PCh. 21 - Prob. 21.33PCh. 21 - Prob. 21.34PCh. 21 - Prob. 21.35PCh. 21 - Prob. 21.36PCh. 21 - Prob. 21.37PCh. 21 - Prob. 21.38PCh. 21 - Prob. 21.39PCh. 21 - Prob. 21.40PCh. 21 - Prob. 21.41PCh. 21 - Prob. 21.42PCh. 21 - Prob. 21.43PCh. 21 - Prob. 21.44PCh. 21 - Prob. 21.45PCh. 21 - Prob. 21.46PCh. 21 - Prob. 21.47PCh. 21 - Prob. 21.48PCh. 21 - Prob. 21.49PCh. 21 - Prob. 21.50PCh. 21 - Prob. 21.51PCh. 21 - Prob. 21.52PCh. 21 - Prob. 21.53PCh. 21 - Prob. 21.54PCh. 21 - Prob. 21.55PCh. 21 - Prob. 21.56PCh. 21 - Prob. 21.57PCh. 21 - Prob. 21.58PCh. 21 - Prob. 21.59PCh. 21 - Prob. 21.60PCh. 21 - Prob. 21.61PCh. 21 - Prob. 21.62PCh. 21 - Prob. 21.63PCh. 21 - Prob. 21.64PCh. 21 - Prob. 21.65PCh. 21 - Prob. 21.66PCh. 21 - Prob. 21.67PCh. 21 - Prob. 21.68PCh. 21 - Prob. 21.69PCh. 21 - Prob. 21.70PCh. 21 - Prob. 21.71PCh. 21 - Prob. 21.72PCh. 21 - Prob. 21.73PCh. 21 - Prob. 21.74PCh. 21 - Prob. 21.75PCh. 21 - Prob. 21.76PCh. 21 - Prob. 21.77PCh. 21 - Prob. 21.78PCh. 21 - Prob. 21.79PCh. 21 - Prob. 21.80PCh. 21 - Prob. 21.81PCh. 21 - Prob. 21.82PCh. 21 - Prob. 21.83PCh. 21 - Prob. 21.84PCh. 21 - Prob. 21.85PCh. 21 - Prob. 21.86PCh. 21 - Prob. 21.87PCh. 21 - Prob. 21.88PCh. 21 - Prob. 21.89PCh. 21 - Prob. 21.90PCh. 21 - Prob. 21.91PCh. 21 - Prob. 21.92PCh. 21 - Prob. 21.93PCh. 21 - Prob. 21.94PCh. 21 - Prob. 21.95PCh. 21 - Prob. 21.96PCh. 21 - Prob. 21.97PCh. 21 - Prob. 21.98PCh. 21 - Prob. 21.1YTCh. 21 - Prob. 21.2YTCh. 21 - Prob. 21.3YTCh. 21 - Prob. 21.4YTCh. 21 - Prob. 21.5YTCh. 21 - Prob. 21.6YTCh. 21 - Prob. 21.7YTCh. 21 - Prob. 21.8YTCh. 21 - Prob. 21.9YTCh. 21 - Prob. 21.10YTCh. 21 - Prob. 21.11YTCh. 21 - Prob. 21.12YT
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
How to Design a Total Synthesis; Author: Chemistry Unleashed;https://www.youtube.com/watch?v=9jRfAJJO7mM;License: Standard YouTube License, CC-BY