General Chemistry - Standalone book (MindTap Course List)
General Chemistry - Standalone book (MindTap Course List)
11th Edition
ISBN: 9781305580343
Author: Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 21, Problem 21.61QP

(a)

Interpretation Introduction

Interpretation:

A complete and balanced equation for the following reaction has to be written. ‘NR’ has to be written in case of no reaction.

I2(aq)+Cl(aq)

Concept introduction:

  • There is a Law for conversion of mass in a chemical reaction i.e., the mass of total amount of the product should be equal to the total mass of the reactants.
  • The concept of writing a balanced chemical reaction is depends on conversion of reactants into products.
  • First write the reaction from the given information.
  • Then count the number of atoms of each element in reactants as well as products.
  • Finally obtained values could place it as coefficients of reactants as well as products.
  • Loss of electron and loss of Hydrogen in a compound is oxidation - the compound is oxidized.  Gain of electron, gain of Oxygen in a compound is reduction - the compound is reduced.
  • Oxidation reduction and reduction reaction occur simultaneously in same reaction.

(a)

Expert Solution
Check Mark

Answer to Problem 21.61QP

The balanced equation for the given reaction is,

I2(aq)+Cl(aq)NR

Explanation of Solution

Halide ions and Halogens act as oxidizing and reducing agents.  Reaction between halide ions and halogens depend upon their strength as oxidizing and reducing agent.  A reducing agent loses electron whereas an oxidizing agent gains electrons.

A halide ion or halogen which is stronger oxidizing agent reacts only with a halide ion or halogen which is stronger reducing agent.  Iodine, in presence of Chloride ion is not a strong oxidizing agent that it doesn’t react with chloride ion.

(b)

Interpretation Introduction

Interpretation:

A complete and balanced equation for the following reaction has to be written. ‘NR’ has to be written in case of no reaction.

Cl2(aq)+Br(aq)

Concept introduction:

  • There is a Law for conversion of mass in a chemical reaction i.e., the mass of total amount of the product should be equal to the total mass of the reactants.
  • The concept of writing a balanced chemical reaction is depends on conversion of reactants into products.
  • First write the reaction from the given information.
  • Then count the number of atoms of each element in reactants as well as products.
  • Finally obtained values could place it as coefficients of reactants as well as products.
  • Loss of electron and loss of Hydrogen in a compound is oxidation - the compound is oxidized.  Gain of electron, gain of Oxygen in a compound is reduction - the compound is reduced.
  • Oxidation reduction and reduction reaction occur simultaneously in same reaction.

(b)

Expert Solution
Check Mark

Answer to Problem 21.61QP

The balanced equation for the given reaction is,

Cl2(aq)+2Br(aq)Br2(aq)+2Cl(aq)

Explanation of Solution

Halide ions and Halogens act as oxidizing and reducing agents.  Reaction between halide ions and halogens depend upon their strength as oxidizing and reducing agent.  A reducing agent loses electron whereas an oxidizing agent gains electrons.

A halide ion or halogen which is stronger oxidizing agent reacts only with a halide ion or halogen which is stronger reducing agent.  Chlorine, in presence of Bromide ion is a strong reducing agent that it reduces bromide ion to bromine.

The balanced equation for the given reaction is,

Cl2(aq)+2Br(aq)Br2(aq)+2Cl(aq)

(c)

Interpretation Introduction

Interpretation:

A complete and balanced equation for the following reaction  has to be written. ‘NR’ has to be written in case of no reaction.

Br2(aq)+I(aq)

Concept introduction:

  • There is a Law for conversion of mass in a chemical reaction i.e., the mass of total amount of the product should be equal to the total mass of the reactants.
  • The concept of writing a balanced chemical reaction is depends on conversion of reactants into products.
  • First write the reaction from the given information.
  • Then count the number of atoms of each element in reactants as well as products.
  • Finally obtained values could place it as coefficients of reactants as well as products.
  • Loss of electron and loss of Hydrogen in a compound is oxidation - the compound is oxidized.  Gain of electron, gain of Oxygen in a compound is reduction - the compound is reduced.
  • Oxidation reduction and reduction reaction occur simultaneously in same reaction.

(c)

Expert Solution
Check Mark

Answer to Problem 21.61QP

The balanced equation for the given reaction is,

Br2(aq)+2I(aq)I2(aq)+2Br(aq)

Explanation of Solution

Halide ions and Halogens act as oxidizing and reducing agents.  Reaction between halide ions and halogens depend upon their strength as oxidizing and reducing agent.  A reducing agent loses electron whereas an oxidizing agent gains electrons.

A halide ion or halogen which is stronger oxidizing agent reacts only with a halide ion or halogen which is stronger reducing agent.  Bromine, in presence of Iodide ion is a strong reducing agent that it reduces iodide ion to iodine.

The balanced equation for the given reaction is,

Br2(aq)+2I(aq)I2(aq)+2Br(aq)

(d)

Interpretation Introduction

Interpretation:

A complete and balanced equation for the following reaction  has to be written. ‘NR’ has to be written in case of no reaction.

Br2(aq)+Cl(aq)

Concept introduction:

  • There is a Law for conversion of mass in a chemical reaction i.e., the mass of total amount of the product should be equal to the total mass of the reactants.
  • The concept of writing a balanced chemical reaction is depends on conversion of reactants into products.
  • First write the reaction from the given information.
  • Then count the number of atoms of each element in reactants as well as products.
  • Finally obtained values could place it as coefficients of reactants as well as products.
  • Loss of electron and loss of Hydrogen in a compound is oxidation - the compound is oxidized.  Gain of electron, gain of Oxygen in a compound is reduction - the compound is reduced.
  • Oxidation reduction and reduction reaction occur simultaneously in same reaction.

(d)

Expert Solution
Check Mark

Answer to Problem 21.61QP

The balanced equation for the given reaction is,

Br2(aq)+Cl(aq)NR

Explanation of Solution

Halide ions and Halogens act as oxidizing and reducing agents.  Reaction between halide ions and halogens depend upon their strength as oxidizing and reducing agent.  A reducing agent loses electron whereas an oxidizing agent gains electrons.

A halide ion or halogen which is stronger oxidizing agent reacts only with a halide ion or halogen which is stronger reducing agent.  Bromine, in presence of Chloride ion is not a strong reducing agent that it reduce chloride ion to chlorine.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Explain how the equation 4Fe(OH)2(s) + O2(g)→2Fe2O3(s) + 4H2O(l) in the article illustrates the oxidation of the iron ions in the reactants
A Predict the major products of the following reaction. Be sure to use wedge and dash bonds to show the stereochemistry of the products when it's important, for example to distinguish between two different major products. + Cl₂ 2 X Click and drag to start drawing a structure.
C app.aktiv.com Predict reagents needed to complete this E2 elimination reaction. Br Problem 17 of 40 H3O+ A heat NaH B heat 0 D E (CH)COK heat CH₂ONa (CH)COH heat Done

Chapter 21 Solutions

General Chemistry - Standalone book (MindTap Course List)

Ch. 21 - Prob. 21.9QPCh. 21 - Prob. 21.10QPCh. 21 - Prob. 21.11QPCh. 21 - Prob. 21.12QPCh. 21 - Prob. 21.13QPCh. 21 - Prob. 21.14QPCh. 21 - Prob. 21.15QPCh. 21 - Prob. 21.16QPCh. 21 - Prob. 21.17QPCh. 21 - Prob. 21.18QPCh. 21 - Prob. 21.19QPCh. 21 - Prob. 21.20QPCh. 21 - Prob. 21.21QPCh. 21 - Prob. 21.22QPCh. 21 - Prob. 21.23QPCh. 21 - Prob. 21.24QPCh. 21 - Prob. 21.25QPCh. 21 - Prob. 21.26QPCh. 21 - Prob. 21.27QPCh. 21 - Prob. 21.28QPCh. 21 - Prob. 21.29QPCh. 21 - Prob. 21.30QPCh. 21 - Prob. 21.31QPCh. 21 - Prob. 21.32QPCh. 21 - Prob. 21.33QPCh. 21 - Prob. 21.34QPCh. 21 - Prob. 21.35QPCh. 21 - Prob. 21.36QPCh. 21 - Prob. 21.37QPCh. 21 - Prob. 21.38QPCh. 21 - Prob. 21.39QPCh. 21 - Prob. 21.40QPCh. 21 - Prob. 21.41QPCh. 21 - Describe the steps in the Ostwald process for the...Ch. 21 - Prob. 21.43QPCh. 21 - Prob. 21.44QPCh. 21 - Prob. 21.45QPCh. 21 - Prob. 21.46QPCh. 21 - Prob. 21.47QPCh. 21 - Prob. 21.48QPCh. 21 - What is the most important commercial means of...Ch. 21 - Prob. 21.50QPCh. 21 - Prob. 21.51QPCh. 21 - Prob. 21.52QPCh. 21 - Prob. 21.53QPCh. 21 - Prob. 21.54QPCh. 21 - Prob. 21.55QPCh. 21 - Prob. 21.56QPCh. 21 - Prob. 21.57QPCh. 21 - Prob. 21.58QPCh. 21 - Prob. 21.59QPCh. 21 - Prob. 21.60QPCh. 21 - Prob. 21.61QPCh. 21 - A test tube contains a solution of one of the...Ch. 21 - Prob. 21.63QPCh. 21 - Prob. 21.64QPCh. 21 - Prob. 21.65QPCh. 21 - Prob. 21.66QPCh. 21 - Prob. 21.67QPCh. 21 - Prob. 21.68QPCh. 21 - Prob. 21.69QPCh. 21 - Prob. 21.70QPCh. 21 - Prob. 21.71QPCh. 21 - Prob. 21.72QPCh. 21 - Prob. 21.73QPCh. 21 - Prob. 21.74QPCh. 21 - Prob. 21.75QPCh. 21 - Prob. 21.76QPCh. 21 - Prob. 21.77QPCh. 21 - Prob. 21.78QPCh. 21 - Prob. 21.79QPCh. 21 - Prob. 21.80QPCh. 21 - Prob. 21.81QPCh. 21 - Prob. 21.82QPCh. 21 - Prob. 21.83QPCh. 21 - Prob. 21.84QPCh. 21 - Prob. 21.85QPCh. 21 - Prob. 21.86QPCh. 21 - Sketch a diagram showing the formation of energy...Ch. 21 - Sketch a diagram showing the formation of energy...Ch. 21 - Prob. 21.89QPCh. 21 - Prob. 21.90QPCh. 21 - Prob. 21.91QPCh. 21 - Prob. 21.92QPCh. 21 - Prob. 21.93QPCh. 21 - Prob. 21.94QPCh. 21 - Francium was discovered as a minor decay product...Ch. 21 - Prob. 21.96QPCh. 21 - Prob. 21.97QPCh. 21 - Prob. 21.98QPCh. 21 - Prob. 21.99QPCh. 21 - Prob. 21.100QPCh. 21 - Prob. 21.101QPCh. 21 - Prob. 21.102QPCh. 21 - Prob. 21.103QPCh. 21 - Prob. 21.104QPCh. 21 - Prob. 21.105QPCh. 21 - Prob. 21.106QPCh. 21 - Prob. 21.107QPCh. 21 - Prob. 21.108QPCh. 21 - Prob. 21.109QPCh. 21 - Prob. 21.110QPCh. 21 - Prob. 21.111QPCh. 21 - Prob. 21.112QPCh. 21 - Prob. 21.113QPCh. 21 - Prob. 21.114QPCh. 21 - Prob. 21.115QPCh. 21 - Prob. 21.116QPCh. 21 - Prob. 21.117QPCh. 21 - Prob. 21.118QPCh. 21 - Prob. 21.119QPCh. 21 - Prob. 21.120QPCh. 21 - Prob. 21.121QPCh. 21 - Prob. 21.122QPCh. 21 - Prob. 21.123QPCh. 21 - Prob. 21.124QPCh. 21 - Prob. 21.125QPCh. 21 - Prob. 21.126QPCh. 21 - Prob. 21.127QPCh. 21 - Prob. 21.128QPCh. 21 - Prob. 21.129QPCh. 21 - Prob. 21.130QPCh. 21 - Prob. 21.131QPCh. 21 - Prob. 21.132QPCh. 21 - Prob. 21.133QPCh. 21 - Prob. 21.134QPCh. 21 - Prob. 21.135QPCh. 21 - Prob. 21.136QPCh. 21 - Prob. 21.137QPCh. 21 - Prob. 21.138QPCh. 21 - Prob. 21.139QPCh. 21 - Prob. 21.140QPCh. 21 - Prob. 21.141QPCh. 21 - Prob. 21.142QPCh. 21 - Prob. 21.143QPCh. 21 - Phosphorous acid, H3PO3, is oxidized to phosphoric...Ch. 21 - Prob. 21.145QPCh. 21 - Prob. 21.146QPCh. 21 - Prob. 21.147QPCh. 21 - Prob. 21.148QPCh. 21 - What are the oxidation numbers of sulfur in each...Ch. 21 - What are the oxidation numbers of sulfur in each...Ch. 21 - Prob. 21.151QPCh. 21 - Prob. 21.152QPCh. 21 - Prob. 21.153QPCh. 21 - Prob. 21.154QPCh. 21 - Prob. 21.155QPCh. 21 - Prob. 21.156QPCh. 21 - Chlorine can be prepared by oxidizing chloride ion...Ch. 21 - Prob. 21.158QPCh. 21 - Prob. 21.159QPCh. 21 - Prob. 21.160QPCh. 21 - Prob. 21.161QPCh. 21 - Prob. 21.162QPCh. 21 - Prob. 21.163QPCh. 21 - Prob. 21.164QPCh. 21 - Prob. 21.165QPCh. 21 - Prob. 21.166QPCh. 21 - Prob. 21.167QPCh. 21 - Xenon trioxide, XeO3, is reduced to xenon in...Ch. 21 - Prob. 21.169QPCh. 21 - Prob. 21.170QPCh. 21 - Prob. 21.171QPCh. 21 - Prob. 21.172QPCh. 21 - Prob. 21.173QPCh. 21 - Prob. 21.174QPCh. 21 - Prob. 21.175QPCh. 21 - Prob. 21.176QPCh. 21 - Prob. 21.177QPCh. 21 - Prob. 21.178QPCh. 21 - Prob. 21.179QPCh. 21 - Prob. 21.180QPCh. 21 - Prob. 21.181QPCh. 21 - Prob. 21.182QPCh. 21 - Prob. 21.183QPCh. 21 - Prob. 21.184QPCh. 21 - Prob. 21.185QPCh. 21 - Prob. 21.186QPCh. 21 - Prob. 21.187QPCh. 21 - Sodium perchlorate, NaClO4, is produced by...Ch. 21 - The amount of sodium hypochlorite in a bleach...Ch. 21 - Prob. 21.190QPCh. 21 - Prob. 21.191QPCh. 21 - Prob. 21.192QPCh. 21 - Prob. 21.193QPCh. 21 - Prob. 21.194QPCh. 21 - Prob. 21.195QPCh. 21 - Prob. 21.196QPCh. 21 - Prob. 21.197QPCh. 21 - Prob. 21.198QPCh. 21 - Prob. 21.199QPCh. 21 - Prob. 21.200QPCh. 21 - Prob. 21.201QPCh. 21 - Prob. 21.202QPCh. 21 - Prob. 21.203QPCh. 21 - Prob. 21.204QP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry: Principles and Reactions
    Chemistry
    ISBN:9781305079373
    Author:William L. Masterton, Cecile N. Hurley
    Publisher:Cengage Learning
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Balancing Redox Reactions in Acidic and Basic Conditions; Author: Professor Dave Explains;https://www.youtube.com/watch?v=N6ivvu6xlog;License: Standard YouTube License, CC-BY