(a)
Interpretation: Whether the given reaction is spontaneous or not at 298 K needs to be estimated.
Concept Introduction: A reaction is said to be spontaneous if the value of the change in Gibbs free energy is negative. The relation between the change in Gibbs free energy, the change in enthalpy, and change in entropy at a given temperature is represented as follows:
Here, T is the absolute temperature.
(b)
Interpretation: Whether the reaction will be more or less spontaneous at higher temperature needs to be identified.
Concept Introduction: A reaction is said to be spontaneous if the value of change in Gibbs free energy is negative. The relation between the change in Gibbs free energy, enthalpy, and entropy at a given temperature is represented as follows:
Here, T is the absolute temperature.
(c)
Interpretation: The value of change in Gibbs free energy needs to be calculated at
Concept Introduction: A reaction is said to be spontaneous if the value of change in Gibbs free energy is negative. The relation between the change in Gibbs free energy, change in enthalpy and change in entropy at a given temperature is represented as follows:
Here, T is the absolute temperature.
Want to see the full answer?
Check out a sample textbook solutionChapter 20 Solutions
CHEMISTRY MOLECULAR NATURE OF MATTER
- Define the following: a. spontaneous process b. entropy c. positional probability d. system e. surroundings f. universearrow_forwardFor each of the following processes, identify the systemand the surroundings. Identify those processes that arespontaneous. For each spontaneous process, identify theconstraint that has been removed to enable the process to occur: Ammonium nitrate dissolves in water. Hydrogen and oxygen explode in a closed bomb. A rubber band is rapidly extended by a hangingweight. The gas in a chamber is slowly compressed by aweighted piston. A glass shatters on the floor.arrow_forwardGiven the values of H and S, which of the following changes will be spontaneous at constant T and p? a. H = + 25 kJ, S = + 5.0 J/K, T = 300. K b. H = + 25 kJ, S = + 100. J/K, T = 300. K c. H = 10. kJ, S = + 5.0 J/K, T= 298 K d. H = 10.kJ, S =40.J/K, T = 200.Karrow_forward
- Enthalpy changes often help predict whether or not a process will be spontaneous. What type of reaction is more likely to be spontaneous: an exothermic or an endothermic one? Provide two examples that support your assertion and one counterexample.arrow_forwardThe combustion of acetylene, C2H2, is a spontaneous reaction given by the equation 2C2H2(g)+5O2(g)4CO2(g)+2H2O(l) As expected for a combustion, the reaction is exothermic. What is the sign of H? What do you expect for the sign of S? Explain the spontaneity of the reaction in terms of the enthalpy and entropy changes.arrow_forwardIndicate whether the following processes are spontaneous or nonspontaneous. (a) Liquid water freezing at a temperature below its freezing point (b) Liquid water freezing at a temperature above its freezing point (c) The combustion of gasoline (d) A ball thrown into the air (e) A raindrop falling to the ground (f) Iron rusting in a moist atmospherearrow_forward
- Consider the reaction of 2 mol H2(g) at 25C and 1 atm with 1 mol O2(g) at the same temperature and pressure to produce liquid water at these conditions. If this reaction is run in a controlled way to generate work, what is the maximum useful work that can be obtained? How much entropy is produced in this case?arrow_forwardWhat is meant by the standard free-energy change G for a reaction? What is meant by the standard free energy of formation Gf of a substance?arrow_forwardThe free energy for a reaction decreases as temperature increases. Explain how this observation is used to determine the sign of either H or S.arrow_forward
- What is the second law of thermodynamics? For any process, there are four possible sign combinations for Ssys and Ssurr. Which sign combination(s) always give a spontaneous process? Which sign combination(s) always give a non-spontaneous process? Which sign combination(s) may or may not give a spontaneous process?arrow_forwardWhat is the sign of the standard Gibbs free-energy change at low temperatures and at high temperatures for the synthesis of ammonia? 3H2(g) + N2(g) 2NH3(g)arrow_forwardThe standard molar entropy of methanol vapor, CH3OH(g), is 239.8 J K1 mol-1. (a) Calculate the entropy change for the vaporization of 1 mol methanol (use data from Table 16.1 or Appendix J). (b) Calculate the enthalpy of vaporization of methanol, assuming that rS doesnt depend on temperature and taking the boiling point of methanol to be 64.6C.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning