(a)
Interpretation:
Balanced equation for the spontaneous cell reaction that occurs in a cell with the reduction half reaction given as follows:
should be written.
Concept introduction:
Electrode potential is capacity of electrode to gain or lose electron when it is dipped in solution of its own ions. The absolute magnitude of cell potential of an electrode cannot be determined as oxidation half reaction or reduction half reaction cannot occur alone. It can be measured by taking a reference electrode. The reference electrode used is standard hydrogen electrode.
Oxidation potential is specific term used for cell potential if oxidation occurs at electrode and reduction potential is the term used if reduction occurs at electrode, with respect to standard hydrogen electrode.
An
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 12SSC
Therefore, balanced equation for spontaneous cell reaction is
Explanation of Solution
Balanced equation for spontaneous cell reaction that occurs in a cell with the reduction half reactions can be determined as follows:
Step1: The two half reactions are identified as follows:
As per the latest convention of sign, the electrode at which reduction occurs with respect to standard hydrogen electrode is assigned positive sign or has higher reduction potential and the electrode at which oxidation occurs with respect to standard hydrogen electrode is assigned negative sign or has lower reduction potential.
Step 2: The electrode potential for two half reactions are compared.
As per table 20.1, standard potential for the half cell reactions are as follows:
Since silver has positive electrode potential then nickel so reduction occurs at silver electrode and oxidation occurs at nickel electrode.
Step 3: Write oxidation half reaction in reverse manner and retain reduction half reaction as follows:
Step 4: Balance electrons in two half reaction by multiplying each by a factor, if required and then adding them.
Therefore, balanced equation for spontaneous cell reaction is
(b)
Interpretation:
Balanced equation for spontaneous cell reaction that occurs in a cell with the reduction half reaction given as follows:
should be written.
Concept introduction:
Electrode potential is capacity of electrode to gain or lose electron when it is dipped in solution of its own ions. The absolute magnitude of cell potential of an electrode cannot be determined as oxidation half reaction or reduction half reaction cannot occur alone. It can be measured by taking a reference electrode. The reference electrode used is standard hydrogen electrode.
Oxidation potential is specific term used for cell potential if oxidation occurs at electrode and reduction potential is the term used if reduction occurs at electrode, with respect to standard hydrogen electrode.
An electrochemical cell is formed of two electrodes that is two half cells. One of these electrodes has higher electrode potential than the other due to which potential difference is created and current flows.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 12SSC
Therefore, balanced equation for spontaneous cell reaction is
Explanation of Solution
Balanced equation for spontaneous cell reaction that occurs in a cell with the reduction half reactions can be determined as follows:
Step1: The two half reactions are identified as follows:
As per the latest convention of sign, the electrode at which reduction occurs with respect to standard hydrogen electrode is assigned positive sign or has higher reduction potential and the electrode at which oxidation occurs with respect to standard hydrogen electrode is assigned negative sign or has lower reduction potential.
Step 2: The electrode potential for two half reactions are compared.
As per table 20.1, standard potential for the half cell reactions are as follows:
Since hydrogen has higher electrode potential then magnesium so reduction occurs at hydrogen electrode and oxidation occurs at magnesium electrode.
Step 3: Write oxidation half reaction in reverse manner and retain reduction half reaction as follows:
Step 4: Balance electrons in two half reaction by multiplying each by a factor, if required and then adding them.
Therefore, balanced equation for spontaneous cell reaction is
(c)
Interpretation:
Balanced equation for spontaneous cell reaction that occurs in a cell with the reduction half reaction given as follows:
should be written.
Concept introduction:
Electrode potential is capacity of electrode to gain or lose electron when it is dipped in solution of its own ions. The absolute magnitude of cell potential of an electrode cannot be determined as oxidation half reaction or reduction half reaction cannot occur alone. It can be measured by taking a reference electrode. The reference electrode used is standard hydrogen electrode.
Oxidation potential is specific term used for cell potential if oxidation occurs at electrode and reduction potential is the term used if reduction occurs at electrode, with respect to standard hydrogen electrode.
An electrochemical cell is formed of two electrodes that is two half cells. One of these electrodes has higher electrode potential than the other due to which potential difference is created and current flows.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 12SSC
Therefore, balanced equation for spontaneous cell reaction is
Explanation of Solution
Balanced equation for spontaneous cell reaction that occurs in a cell with the reduction half reactions can be determined as follows:
Step1: The two half reactions are identified as follows:
As per the latest convention of sign, the electrode at which reduction occurs with respect to standard hydrogen electrode is assigned positive sign or has higher reduction potential and the electrode at which oxidation occurs with respect to standard hydrogen electrode is assigned negative sign or has lower reduction potential.
Step 2: The electrode potential for two half reactions are compared.
As per table 20.1, standard potential for the half cell reactions are as follows:
Since iron has higher electrode potential then tin so reduction occurs at iron electrode and oxidation occurs at tin electrode.
Step 3: Write oxidation half reaction in reverse manner and retain reduction half reaction as follows:
Step 4: Balance electrons in two half reaction by multiplying each by a factor and then adding them.
Therefore, balanced equation for spontaneous cell reaction is
(d)
Interpretation:
Balanced equation for spontaneous cell reaction that occurs in a cell with the reduction half reaction given as follows:
should be written.
Concept introduction:
Electrode potential is capacity of electrode to gain or lose electron when it is dipped in solution of its own ions. The absolute magnitude of cell potential of an electrode cannot be determined as oxidation half reaction or reduction half reaction cannot occur alone. It can be measured by taking a reference electrode. The reference electrode used is standard hydrogen electrode.
Oxidation potential is specific term used for cell potential if oxidation occurs at electrode and reduction potential is the term used if reduction occurs at electrode, with respect to standard hydrogen electrode.
An electrochemical cell is formed of two electrodes that is two half cells. One of these electrodes has higher electrode potential than the other due to which potential difference is created and current flows.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 12SSC
Therefore, balanced equation for spontaneous cell reaction is
Explanation of Solution
Balanced equation for spontaneous cell reaction that occurs in a cell with the reduction half reactions can be determined as follows:
Step1: The two half reactions are identified as follows:
As per the latest convention of sign, the electrode at which reduction occurs with respect to standard hydrogen electrode is assigned positive sign or has higher reduction potential and the electrode at which oxidation occurs with respect to standard hydrogen electrode is assigned negative sign or has lower reduction potential.
Step 2: The electrode potential for two half reactions are compared.
As per table 20.1, standard potential for the half cell reactions are as follows:
Since platinum has positive electrode potential then lead so reduction occurs at platinum electrode and oxidation occurs at lead electrode.
Step 3: Write oxidation half reaction in reverse manner and retain reduction half reaction as follows:
Step 4: Balance electrons in two half reaction by multiplying each by a factor and then adding them.
Therefore, balanced equation for spontaneous cell reaction is
Chapter 20 Solutions
Chemistry: Matter and Change
Additional Science Textbook Solutions
Brock Biology of Microorganisms (15th Edition)
Chemistry: Structure and Properties (2nd Edition)
Human Anatomy & Physiology (2nd Edition)
Introductory Chemistry (6th Edition)
Biological Science (6th Edition)
Cosmic Perspective Fundamentals
- Questions 4 and 5arrow_forwardFor a titration of 40.00 mL of 0.0500 M oxalic acid H2C2O4 with 0.1000 M KOH, calculate the pH at each of the following volume of KOH used in the titration: 1) before the titration begin;2) 15 mL; 3) 20 mL; 4) 25 mL; 5) 40 mL; 6) 50 mL. Ka1 = 5.90×10^-2, Ka2 = 6.50×10^-5 for oxalic acid.arrow_forwardPredict the major organic product(s), if any, of the following reactions. Assume all reagents are in excess unless otherwise indicated.arrow_forward
- Predict the major organic product(s), if any, of the following reactions. Assume all reagents are in excess unless otherwise indicated.arrow_forwardHow many signals would you expect to find in the 1 H NMR spectrum of each given compound? Part 1 of 2 2 Part 2 of 2 HO 5 ☑ Х IIIIII***** §arrow_forwardA carbonyl compound has a molecular ion with a m/z of 86. The mass spectra of this compound also has a base peak with a m/z of 57. Draw the correct structure of this molecule. Drawingarrow_forward
- Can you draw this using Lewis dot structures and full structures in the same way they are so that I can better visualize them and then determine resonance?arrow_forwardSynthesize the following compound from cyclohexanol, ethanol, and any other needed reagentsarrow_forwardFor a titration of 20.00 mL of 0.0500 M H2SO4 with 0.100 M KOH, calculate the pH at each of the following volume of KOH used in the titration: 1) before the titration begin; 2) 10.00 mL; 3) 20.00 mL; 4) 30.00 mL. Ka2 = 1.20×10-2 for H2SO4.arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s) Be sure to account for all bond-breaking and bond-making steps Problem 73 of 10 Drawing Amows ro HO Donearrow_forward12. Synthesize the following target molecules (TMs) using the specified starting materials. .CI a) HO3S SM TM b) HO- SMarrow_forwardFor a titration of 20.00 mL of 0.0500 M H2SO4 with 0.100 M KOH, calculate the pH at each of the following volume of KOH used in the titration: 1) before the titration begin; 2) 10.00 mL; 3) 20.00 mL; 4) 30.00 mL. Ka2 = 1.20×10-2 for H2SO4.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)