Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 61PQ
To determine
The pressure of the gas molecules.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A sealed box contains a monatomic ideal gas. The number of gas atoms per unit volume is 6.31×1020 atoms/cm3, and the average translational kinetic energy of each atom is 1.20×10−23 J .
What is the gas pressure?
p = ? Pa
If the gas is neon (molar mass 20.18 g/mol ), what is vrms for the gas atoms?
Vrms = ____ ? _____ units
Problem 5: n = 3.9 moles of an ideal gas are pumped into a chamber of volume V = 0.094 m3.
Part (a) The initial pressure of the gas is 1 atm. What is the initial temperature (in K) of the gas?
50% Part (b) The pressure of the gas is increased to 10 atm. Now what is the temperature (in K) of the gas?
Oxygen (O2) gas at 273 K and 1.0 atm is confined to a cubical container 10 cm on a side. Calculate Ug/Kavg, where Ug is the change in the gravitational potential energy of an oxygen molecule falling the height of the box and Kavg is the molecule’s average translational kinetic energy.
Chapter 20 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 20.2 - In Example 20.1, we found that the rms value of a...Ch. 20.3 - If the temperature of a gas is doubled, what...Ch. 20.3 - Prob. 20.3CECh. 20.5 - Prob. 20.4CECh. 20.7 - Prob. 20.5CECh. 20.8 - Prob. 20.6CECh. 20 - Prob. 1PQCh. 20 - Prob. 2PQCh. 20 - Prob. 3PQCh. 20 - Prob. 4PQ
Ch. 20 - Prob. 5PQCh. 20 - Prob. 6PQCh. 20 - Prob. 7PQCh. 20 - Prob. 8PQCh. 20 - Particles in an ideal gas of molecular oxygen (O2)...Ch. 20 - Prob. 10PQCh. 20 - Prob. 11PQCh. 20 - Prob. 12PQCh. 20 - Prob. 13PQCh. 20 - Prob. 14PQCh. 20 - The mass of a single hydrogen molecule is...Ch. 20 - Prob. 16PQCh. 20 - The noble gases neon (atomic mass 20.1797 u) and...Ch. 20 - Prob. 18PQCh. 20 - Prob. 19PQCh. 20 - Prob. 20PQCh. 20 - Prob. 22PQCh. 20 - Prob. 23PQCh. 20 - Prob. 24PQCh. 20 - Prob. 25PQCh. 20 - Prob. 26PQCh. 20 - Prob. 27PQCh. 20 - Prob. 28PQCh. 20 - Consider the Maxwell-Boltzmann distribution...Ch. 20 - Prob. 30PQCh. 20 - Prob. 31PQCh. 20 - Prob. 32PQCh. 20 - Prob. 33PQCh. 20 - Prob. 34PQCh. 20 - Prob. 35PQCh. 20 - Prob. 36PQCh. 20 - Prob. 37PQCh. 20 - Prob. 38PQCh. 20 - Prob. 39PQCh. 20 - Prob. 40PQCh. 20 - Prob. 41PQCh. 20 - Prob. 42PQCh. 20 - Prob. 43PQCh. 20 - Prob. 44PQCh. 20 - Figure P20.45 shows a phase diagram of carbon...Ch. 20 - Prob. 46PQCh. 20 - Prob. 47PQCh. 20 - Consider water at 0C and initially at some...Ch. 20 - Prob. 49PQCh. 20 - Prob. 50PQCh. 20 - Prob. 51PQCh. 20 - Prob. 52PQCh. 20 - Prob. 53PQCh. 20 - Prob. 54PQCh. 20 - Prob. 55PQCh. 20 - Prob. 56PQCh. 20 - Consider again the box and particles with the...Ch. 20 - Prob. 58PQCh. 20 - The average kinetic energy of an argon atom in a...Ch. 20 - For the exam scores given in Table P20.60, find...Ch. 20 - Prob. 61PQCh. 20 - Prob. 62PQCh. 20 - Prob. 63PQCh. 20 - Prob. 64PQCh. 20 - Prob. 65PQCh. 20 - Prob. 66PQCh. 20 - Determine the rms speed of an atom in a helium...Ch. 20 - Consider a gas filling two connected chambers that...Ch. 20 - Prob. 69PQCh. 20 - Prob. 70PQCh. 20 - A 0.500-m3 container holding 3.00 mol of ozone...Ch. 20 - Prob. 72PQCh. 20 - Prob. 73PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) An ideal gas occupies a volume of 1.0 cm3 at 20.C and atmospheric pressure. Determine the number of molecules of gas in the container, (b) If the pressure of the 1.0-cm3 volume is reduced to 1.0 1011 Pa (an extremely good vacuum) while the temperature remains constant, how many moles of gas remain in the container?arrow_forwardA sealed cubical container 20.0 cm on a side contains a gas with three times Avogadros number of neon atoms at a temperature of 20.0C. (a) Find the internal energy of the gas. (b) Find the total translational kinetic energy of the gas. (c) Calculate the average kinetic energy per atom, (d) Use Equation 10.13 to calculate the gas pressure. (e) Calculate the gas pressure using the ideal gas law (Eq. 10.8).arrow_forwardHow many moles are there in (a) 0.0500 g of N2 gas (M = 28.0 g/mol)? (b) 10.0 g of CO2 gas (M = 44.0 g/mol)? (c) How many molecules are present in each case?arrow_forward
- The mass of a single hydrogen molecule is approximately 3.32 1027 kg. There are 5.64 1023 hydrogen molecules in a box with square walls of area 49.0 cm2. If the rms speed of the molecules is 2.72 103 m/s, calculate the pressure exerted by the gas.arrow_forwardCylinder A contains oxygen (O2) gas, and cylinder B contains nitrogen (N2) gas. If the molecules in the two cylinders have the same rms speeds, which of the following statements is false? (a) The two gases haw different temperatures. (b) The temperature of cylinder B is less than the temperature of cylinder A. (c) The temperature of cylinder B is greater than the temperature of cylinder A. (d) The average kinetic energy of the nitrogen molecules is less than the average kinetic energy of the oxygen molecules.arrow_forwardThe mean free path for a certain gas is 2.18×10−7 m. and the radius of an atom of said gas is approximately 1.11×10−11 m. What is the density of the gas in moles per cubic meter under these conditions?arrow_forward
- Two moles of an ideal gas are placed in a container whose volume is 7.9 x 103 m3. The absolute pressure of the gas is 4.5 x 10 Pa. What is the average translational kinetic energy of a molecule of the gas? Number Units the tolerance is +/-2% the tolerarrow_forwardA 5 L tank contains Argon gas at 55°C and 4.5 atm. Find the total translational kinetic energy of all the Argon atoms in the tank. 1 atm = 1.013 x 10^5 Pa 1 L = 10^-3 m^3 R= 8.314 J/K-mol Molar mass of Argon= 40 Kb=1.38 x 10 ^-23 J/Karrow_forwardHelium atoms have a mass of 4u and oxygen molecules have a mass of 32u, where u is defined as an atomic mass unit (u=1.660540×10−27 kg). Compare a gas of helium atoms to a gas of oxygen molecules. Part A: At what gas temperature TE would the average translational kinetic energy of a helium atom be equal to that of an oxygen molecule in a gas of temperature 300 K? Part B: At what gas temperature Trms would the root-mean-square (rms) speed of a helium atom be equal to that of an oxygen molecule in a gas at 300 K?arrow_forward
- n = 3.9 moles of an ideal gas are pumped into a chamber of volume V = 0.135 m3 50% Part (a) The initial pressure of the gas is 1 atm. What is the initial temperature (in K) of the gas? T = 421.76T = 421.8 ✔ Correct! 50% Part (b) The pressure of the gas is increased to 10 atm. Now what is the temperature (in K) of the gas?arrow_forwardA sample of an ideal gas is compressed and cooled as it is taken from state 1 to state 2. The given properties for the gas in the two states are: p1 = 94.0 kPa, V1 = 0.0500 m3, V2 = 0.0400 m3, T1 = 300. K, T2 = 260. K.Calculate the pressure of the gas in state 2. Note: You must enter units with your answer.arrow_forwarda) A container with 24 L of nitrogen gas at 2 atm and another container with 12 L of oxygen gas at 2 atm are both at 273 K. If both gases are mixed in a single 10 L container, what are the partial pressures of nitrogen and oxygen in the resulting mixture? What is the total pressure? (R = 0.082 atm L/mol K)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning