
(a)
The high relative humidity and the low relative humidity of the places.
(a)

Answer to Problem 52PQ
The high relative humidity of the place is
Explanation of Solution
Given that the high temperature is
Relative humidity is the ratio of the partial pressure of water to the saturated vapor pressure of water. The value of partial pressure of water is not given directly, but the value can be derived using the information given in the question. The dew point of the place is given, which is the temperature at which the partial pressure of water equals to the saturated vapor pressure.
Write the expression to convert temperature from Fahrenheit scale to Celsius scale.
Here,
Refer table 20.5 which gives the saturated vapor pressure values for various temperatures.
From the table look for the values for the high temperature and the low temperature. But the values of vapor pressure for both the temperatures is not available. So use the values for temperatures
Write the expression for the rate of change of saturated vapor pressure with respect to the change in temperature between
Here,
Now the rate of change of vapor pressure with respect to the change of temperature is found. Now using this value, the vapor pressure of water at
Write the interpolation expression for vapor pressure at the dew point.
Here,
The vapor pressure at the dew point is equal to the vapor pressure of water.
Use expression (V) in (VI) for
Similarly write expression for finding vapor pressure for high temperature using the values of
Here,
Similarly write expression for finding vapor pressure for low temperature using the values of
Here,
Write the expression to find the relative humidity at high temperature.
Here,
Write the expression to find the relative humidity at low temperature.
Here,
Conclusion:
Substitute
Substitute
Substitute
From the table 20.5, vapor pressure at
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Therefore, the high relative humidity of the place is
(b)
Whether dews form or not in the places.
(b)

Answer to Problem 52PQ
Yes, dews are formed in the atmosphere of the places.
Explanation of Solution
Dews are formed by the condensation of water. Dew point of Minneapolis and Minnesota is
Conclusion:
Therefore, dews can be formed at Minneapolis and Minnesota.
Want to see more full solutions like this?
Chapter 20 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- Sketch the harmonic.arrow_forwardFor number 11 please sketch the harmonic on graphing paper.arrow_forward# E 94 20 13. Time a) What is the frequency of the above wave? b) What is the period? c) Highlight the second cycle d) Sketch the sine wave of the second harmonic of this wave % 7 & 5 6 7 8 * ∞ Y U 9 0 0 P 150arrow_forward
- Show work using graphing paperarrow_forwardCan someone help me answer this physics 2 questions. Thank you.arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 μF.) a C 3.00 με Hh. 6.00 με 20.0 με HE (a) Find the equivalent capacitance between points a and b. 5.92 HF (b) Calculate the charge on each capacitor, taking AV ab = 16.0 V. 20.0 uF capacitor 94.7 6.00 uF capacitor 67.6 32.14 3.00 µF capacitor capacitor C ☑ με με The 3 µF and 12.0 uF capacitors are in series and that combination is in parallel with the 6 μF capacitor. What quantity is the same for capacitors in parallel? μC 32.14 ☑ You are correct that the charge on this capacitor will be the same as the charge on the 3 μF capacitor. μCarrow_forward
- In the pivot assignment, we observed waves moving on a string stretched by hanging weights. We noticed that certain frequencies produced standing waves. One such situation is shown below: 0 ст Direct Measurement ©2015 Peter Bohacek I. 20 0 cm 10 20 30 40 50 60 70 80 90 100 Which Harmonic is this? Do NOT include units! What is the wavelength of this wave in cm with only no decimal places? If the speed of this wave is 2500 cm/s, what is the frequency of this harmonic (in Hz, with NO decimal places)?arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forwardTwo conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forward
- Please see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forwardA spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forward
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





