Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 20, Problem 30PQ
(a)
To determine
The amount by which the most probable speed will increase if we increase the temperature by
(b)
To determine
The amount by which the most probable speed will increase if we increase the temperature by
(c)
To determine
The comparison between the results in (a) and (b).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4.0 moles of krypton gas are in a 0.20 m3 container. The pressure is 1.663 × 105 Pa.
a. What is the temperature (to the nearest K)?
The volume contracts to 0.10 m3. The pressure is held constant.
b. How much work was done by the gas during the volume contraction?
c. What is the temperature after the volume contraction (to the nearest K)?
d. What was the change in thermal energy?
e. What was the heat flow? Express in units of J, positive = into gas, negative = out of gas.
A 1.0 cm3 air bubble is released from the sandy bottom of a warm, shallow sea, where the gauge pressure is 1.5 atm. The bubble rises slowly enough that the air inside remains at the same constant temperature as the water.a. What is the volume of the bubble as it reaches the surface?b. As the bubble rises, is heat energy transferred from the waterto the bubble or from the bubble to the water? Explain.
A container holds 1.0 g of oxygen at a pressure of 8.0 atm.a. How much heat is required to increase the temperature by 100°C at constant pressure?b. How much will the temperature increase if this amount of heat energy is transferred to the gas at constant volume?
Chapter 20 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 20.2 - In Example 20.1, we found that the rms value of a...Ch. 20.3 - If the temperature of a gas is doubled, what...Ch. 20.3 - Prob. 20.3CECh. 20.5 - Prob. 20.4CECh. 20.7 - Prob. 20.5CECh. 20.8 - Prob. 20.6CECh. 20 - Prob. 1PQCh. 20 - Prob. 2PQCh. 20 - Prob. 3PQCh. 20 - Prob. 4PQ
Ch. 20 - Prob. 5PQCh. 20 - Prob. 6PQCh. 20 - Prob. 7PQCh. 20 - Prob. 8PQCh. 20 - Particles in an ideal gas of molecular oxygen (O2)...Ch. 20 - Prob. 10PQCh. 20 - Prob. 11PQCh. 20 - Prob. 12PQCh. 20 - Prob. 13PQCh. 20 - Prob. 14PQCh. 20 - The mass of a single hydrogen molecule is...Ch. 20 - Prob. 16PQCh. 20 - The noble gases neon (atomic mass 20.1797 u) and...Ch. 20 - Prob. 18PQCh. 20 - Prob. 19PQCh. 20 - Prob. 20PQCh. 20 - Prob. 22PQCh. 20 - Prob. 23PQCh. 20 - Prob. 24PQCh. 20 - Prob. 25PQCh. 20 - Prob. 26PQCh. 20 - Prob. 27PQCh. 20 - Prob. 28PQCh. 20 - Consider the Maxwell-Boltzmann distribution...Ch. 20 - Prob. 30PQCh. 20 - Prob. 31PQCh. 20 - Prob. 32PQCh. 20 - Prob. 33PQCh. 20 - Prob. 34PQCh. 20 - Prob. 35PQCh. 20 - Prob. 36PQCh. 20 - Prob. 37PQCh. 20 - Prob. 38PQCh. 20 - Prob. 39PQCh. 20 - Prob. 40PQCh. 20 - Prob. 41PQCh. 20 - Prob. 42PQCh. 20 - Prob. 43PQCh. 20 - Prob. 44PQCh. 20 - Figure P20.45 shows a phase diagram of carbon...Ch. 20 - Prob. 46PQCh. 20 - Prob. 47PQCh. 20 - Consider water at 0C and initially at some...Ch. 20 - Prob. 49PQCh. 20 - Prob. 50PQCh. 20 - Prob. 51PQCh. 20 - Prob. 52PQCh. 20 - Prob. 53PQCh. 20 - Prob. 54PQCh. 20 - Prob. 55PQCh. 20 - Prob. 56PQCh. 20 - Consider again the box and particles with the...Ch. 20 - Prob. 58PQCh. 20 - The average kinetic energy of an argon atom in a...Ch. 20 - For the exam scores given in Table P20.60, find...Ch. 20 - Prob. 61PQCh. 20 - Prob. 62PQCh. 20 - Prob. 63PQCh. 20 - Prob. 64PQCh. 20 - Prob. 65PQCh. 20 - Prob. 66PQCh. 20 - Determine the rms speed of an atom in a helium...Ch. 20 - Consider a gas filling two connected chambers that...Ch. 20 - Prob. 69PQCh. 20 - Prob. 70PQCh. 20 - A 0.500-m3 container holding 3.00 mol of ozone...Ch. 20 - Prob. 72PQCh. 20 - Prob. 73PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) What is me gauge pressure in a 25.0C car tire containing 3.60 mol of gas in a 30.0 L volume? (b) What will its gauge pressure be if you add 1.00 L of gas originally at atmospheric pressure and 25.0C ? Assume the temperature returns to 25.0C and me volume remains constant.arrow_forwardA cylinder contains a mixture of helium and argon gas in equilibrium at 150C. (a) What is the average kinetic energy for each type of gas molecule? (b) What is the rms speed of each type of molecule?arrow_forward(a) An ideal gas occupies a volume of 1.0 cm3 at 20.C and atmospheric pressure. Determine the number of molecules of gas in the container, (b) If the pressure of the 1.0-cm3 volume is reduced to 1.0 1011 Pa (an extremely good vacuum) while the temperature remains constant, how many moles of gas remain in the container?arrow_forward
- Figure P20.45 shows a phase diagram of carbon dioxide in terms of pressure and temperature, a. Use the phase diagram to explain why dry ice (solid carbon dioxide) sublimates into vapor at atmospheric pressure rather than melting into a liquid. At what temperature does the dry ice sublimate when at atmospheric pressure? b. Estimate what pressure would be needed to liquefy carbon dioxide at room temperature.arrow_forwardAn air bubble starts rising from the bottom of a lake. Its diameter is 3.60 mm at the bottom and 4.00 mm at the surface. The depth of the lake is 2.50 m, and the temperature at the surface is 40.0C. What is the temperature at the bottom of the lake? Consider the atmospheric pressure to be 1.01 105 Pa and the density of water to be 1.00 103 kg/m3. Model the air as an ideal gas. 53. Use the ideal gas law for the bottom (point 1) and the surface (point 2) of the lake. At the surface, the pressure is atmospheric pressure. However, at the bottom it is equal to to the sum of the atmospheric pressure and the pressure due to 2.50 m column of water. P2=1.01105PaP1=P2+WghWP1=1.01105Pa+(1.00103kg/m3)(9.81m/s2)(2.50m) Use the ideal gas law (Eq. 19.17). T1=P1V1P2V2T2 The volume ratio at the bottom and top of the lake can be calculated with the diameters given. V1V2=43r1343r23=(1.82.0)3 T1=P1P2(V1V2)T2T1=1.01105Pa+(1.00103kg/m3)(9.81m/s2)(2.50m)1.01105Pa(1.802.00)3(40.0+273.15K)T1=284Karrow_forwardA steel plate has a circular hole drilled in its center. If the diameter of the hole varies according to thermal linear expansion, show that the area of the original circle A0 changes with an increase in temperature T, following the approximate relation A CA0 T, where C = 2. Hint: (T)2T.arrow_forward
- The Sun radiates like a perfect black body with an emissivity of exactly 1. (a) Calculate the surface temperature of the Sun, given that it is a sphere with a 7.00108m radius that radiates 3.801026W into 3-K space. (b) How much power does the Sun radiate per square meter of its surface? (c) How much power in watts per square meter is that value at the distance of Earth, 1.501011m away? (This number is called the solar constant.)arrow_forwardIn the text, it was shown that N/V=2.681025m3 for gas at STP. (a) Show that this quantity is equivalent to N/V=2.681019cm3, as stated. (b) About how many atoms are mere in one m3 (a cubic micrometer) at STP? (c) What does your answer to part (b) imply about the separation of Mama and molecules?arrow_forwardUnreasonable Results (a) An automobile mechanic claims that an aluminum rod fits loosely into its hole on an aluminum engine block because the engine is hot and the rod is cold. If 1he hole is 10.0% bigger in diameter than the 22.0C rod, at what temperature will the rod be the same size as the hole? (b) What is unreasonable about this temperature? (2) Which premise is responsible?arrow_forward
- A person is in a closed room (a racquetball court) with v=453 m3 hitting a ball (m 42.0 g) around at random without any pauses. The average kinetic energy of the ball is 2.30 J. (a) What is the average value of vx2 ? Does it matter which direction you take to be x ? (b) Applying the methods of this chapter, find the average pressure on the walls? (c) Aside from the presence of only one "molecule" in this problem, what is the main assumption in Pressure, Temperature, and RMS Speed that does not apply here?arrow_forwardCase Study When a constant-volume thermometer is in thermal contact with a substance whose temperature is lower than the triple point of water, how does the right tube in Figure 19.22 need to be moved? Explain. FIGURE 19.22 1 Gas in the constant-volume gas thermometer is at Ti, and the mercury in the manometer is at height hi above the gasmercury boundary. 2 The thermometer is placed in thermal contact with an object, and its temperature increases. The increased temperature increases the gas volume. 3 By raising the right-hand tube of the mercury manometer, the gas volume is restored to its original size. The mercury is now at hi + h above the gasmercury boundary. This increase in height is a result of the increase in gas temperature and pressure.arrow_forwardUnreasonable Results The temperature inside a supernova explosion is said to be 2.001013K. (a) What would the average velocity vrmsof hydrogen atoms be? (b) What is unreasonable about this velocity? (b) Which premise or assumption is responsible?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY