Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 20PQ
To determine
The rms speed of oxygen molecules in room temperature and in a cold day.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Initially, the translational rms speed of a
molecule if an ideal gas is 560 m/s. The
pressure and volume of this gas are kept
constant, while the number of molecules
is increased by a factor of 7. What is the
final translational rms speed of the
molecules?
The following figure is a histogram showing the speeds of the molecules in a very small gas. What are (a) the most probable speed, (b) the average speed, and (c) the rms speed?
If you double the typical speed of the molecules in a gas, by what factor does the pressure change? Give a simple explanation why the pressure changes by this factor.
Chapter 20 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 20.2 - In Example 20.1, we found that the rms value of a...Ch. 20.3 - If the temperature of a gas is doubled, what...Ch. 20.3 - Prob. 20.3CECh. 20.5 - Prob. 20.4CECh. 20.7 - Prob. 20.5CECh. 20.8 - Prob. 20.6CECh. 20 - Prob. 1PQCh. 20 - Prob. 2PQCh. 20 - Prob. 3PQCh. 20 - Prob. 4PQ
Ch. 20 - Prob. 5PQCh. 20 - Prob. 6PQCh. 20 - Prob. 7PQCh. 20 - Prob. 8PQCh. 20 - Particles in an ideal gas of molecular oxygen (O2)...Ch. 20 - Prob. 10PQCh. 20 - Prob. 11PQCh. 20 - Prob. 12PQCh. 20 - Prob. 13PQCh. 20 - Prob. 14PQCh. 20 - The mass of a single hydrogen molecule is...Ch. 20 - Prob. 16PQCh. 20 - The noble gases neon (atomic mass 20.1797 u) and...Ch. 20 - Prob. 18PQCh. 20 - Prob. 19PQCh. 20 - Prob. 20PQCh. 20 - Prob. 22PQCh. 20 - Prob. 23PQCh. 20 - Prob. 24PQCh. 20 - Prob. 25PQCh. 20 - Prob. 26PQCh. 20 - Prob. 27PQCh. 20 - Prob. 28PQCh. 20 - Consider the Maxwell-Boltzmann distribution...Ch. 20 - Prob. 30PQCh. 20 - Prob. 31PQCh. 20 - Prob. 32PQCh. 20 - Prob. 33PQCh. 20 - Prob. 34PQCh. 20 - Prob. 35PQCh. 20 - Prob. 36PQCh. 20 - Prob. 37PQCh. 20 - Prob. 38PQCh. 20 - Prob. 39PQCh. 20 - Prob. 40PQCh. 20 - Prob. 41PQCh. 20 - Prob. 42PQCh. 20 - Prob. 43PQCh. 20 - Prob. 44PQCh. 20 - Figure P20.45 shows a phase diagram of carbon...Ch. 20 - Prob. 46PQCh. 20 - Prob. 47PQCh. 20 - Consider water at 0C and initially at some...Ch. 20 - Prob. 49PQCh. 20 - Prob. 50PQCh. 20 - Prob. 51PQCh. 20 - Prob. 52PQCh. 20 - Prob. 53PQCh. 20 - Prob. 54PQCh. 20 - Prob. 55PQCh. 20 - Prob. 56PQCh. 20 - Consider again the box and particles with the...Ch. 20 - Prob. 58PQCh. 20 - The average kinetic energy of an argon atom in a...Ch. 20 - For the exam scores given in Table P20.60, find...Ch. 20 - Prob. 61PQCh. 20 - Prob. 62PQCh. 20 - Prob. 63PQCh. 20 - Prob. 64PQCh. 20 - Prob. 65PQCh. 20 - Prob. 66PQCh. 20 - Determine the rms speed of an atom in a helium...Ch. 20 - Consider a gas filling two connected chambers that...Ch. 20 - Prob. 69PQCh. 20 - Prob. 70PQCh. 20 - A 0.500-m3 container holding 3.00 mol of ozone...Ch. 20 - Prob. 72PQCh. 20 - Prob. 73PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Cylinder A contains oxygen (O2) gas, and cylinder B contains nitrogen (N2) gas. If the molecules in the two cylinders have the same rms speeds, which of the following statements is false? (a) The two gases haw different temperatures. (b) The temperature of cylinder B is less than the temperature of cylinder A. (c) The temperature of cylinder B is greater than the temperature of cylinder A. (d) The average kinetic energy of the nitrogen molecules is less than the average kinetic energy of the oxygen molecules.arrow_forwardConsider the Maxwell-Boltzmann distribution function plotted in Problem 28. For those parameters, determine the rms velocity and the most probable speed, as well as the values of f(v) for each of these values. Compare these values with the graph in Problem 28. 28. Plot the Maxwell-Boltzmann distribution function for a gas composed of nitrogen molecules (N2) at a temperature of 295 K. Identify the points on the curve that have a value of half the maximum value. Estimate these speeds, which represent the range of speeds most of the molecules are likely to have. The mass of a nitrogen molecule is 4.68 1026 kg. Equation 20.18 can be used to find the rms velocity given the temperature, Boltzmanns constant, and the mass of the atom or molecule. The mass of a nitrogen molecule is 4.68 1026 kg. vrms=3kBTm=3(1.381023J/K)4.681026kg=511m/s Using the results of Problem 28 and the rms velocity, we can calculate the value of f(v). f(vrms) = (3.11 108)(511)2 e(5.75106(511)2) = 0.00181 The most probable speed, for which this function has its maximum value, is given by Equation 20.20. vmp=2kBTm=2(1.381023J/K)(295K)4.681026kg=417m/s f(vmp) = (3.11108)(417)2 e(5.75106(417)2) = 0.00199 We plot these points on the speed distribution. The most probable speed is indeed at the peak of the distribution function. Since the function is not symmetric, the rms velocity is somewhat higher than the most probable speed. Figure P20.29ANSarrow_forwardA cylinder contains a mixture of helium and argon gas in equilibrium at 150C. (a) What is the average kinetic energy for each type of gas molecule? (b) What is the rms speed of each type of molecule?arrow_forward
- Fifteen identical particles have various speeds: one has a speed of 2.00 m/s, two have speeds of 3.00 m/s, three have speeds of 5.00 m/s, four have speeds of 7.00 m/s, three have speeds of 9.00 m/s, and two have speeds of 12.0 m/s. Find (a) the average speed, (b) the rms speed, and (c) the most probable speed of these particles.arrow_forwardTwo containers hold an ideal gas at the same temperature and pressure. Both containers hold the same type of gas, but container B has twice the volume of container A. (i) What is the average translational kinetic energy per molecule in container B? (a) twice that of container A (b) the same as that of container A (c) half that of container A (d) impossible to determine (ii) From the same choices, describe the internal energy of the gas in container B.arrow_forwardOne cylinder contains helium gas and another contains krypton gas at the same temperature. Mark each of these statements true, false, or impossible to determine from the given information. (a) The rms speeds of atoms in the two gases are the same. (b) The average kinetic energies of atoms in the two gases are the same. (c) The internal energies of 1 mole of gas in each cylinder are the same. (d) The pressures in the two cylinders ale the same.arrow_forward
- A gas is at 200 K. If we wish to double the rms speed of the molecules of the gas, to what value must we raise its temperature? (a) 283 K (b) 400 K (c) 566 K (d) 800 K (e) 1 130 Karrow_forwardFind (a) the most probable speed, (b) the average speed, and (c) the rms speed for nitrogen molecules at 295 K.arrow_forward(a) An ideal gas occupies a volume of 1.0 cm3 at 20.C and atmospheric pressure. Determine the number of molecules of gas in the container, (b) If the pressure of the 1.0-cm3 volume is reduced to 1.0 1011 Pa (an extremely good vacuum) while the temperature remains constant, how many moles of gas remain in the container?arrow_forward
- An ideal gas is trapped inside a tube of uniform cross-sectional area sealed at one end as shown in Figure P19.49. A column of mercury separates the gas from the outside. The tube can be turned in a vertical plane. In Figure P19.49A, the column of air in the tube has length L1, whereas in Figure P19.49B, the column of air has length L2. Find an expression (in terms of the parameters given) for the length L3 of the column of air in Figure P19.49C, when the tube is inclined at an angle with respect to the vertical. FIGURE P19.49arrow_forwardA sealed cubical container 20.0 cm on a side contains a gas with three times Avogadros number of neon atoms at a temperature of 20.0C. (a) Find the internal energy of the gas. (b) Find the total translational kinetic energy of the gas. (c) Calculate the average kinetic energy per atom, (d) Use Equation 10.13 to calculate the gas pressure. (e) Calculate the gas pressure using the ideal gas law (Eq. 10.8).arrow_forwardWhich of the assumptions below is not made in the kinetic theory of gases? (a) The number of molecules is very large. (b) The molecules obey Newtons laws of motion. (c) The forces between molecules are long range. (d) The gas is a pure substance. (e) The average separation between molecules is large compared to their dimensions. (f) of (his account are correct statements necessary for a clear and complete explanation? (ii) Which are correct statements that are not necessary to account for the higher thermometer reading? (iii) Which are incorrect statements?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Kinetic Molecular Theory and its Postulates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=o3f_VJ87Df0;License: Standard YouTube License, CC-BY