Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 8PQ
To determine
The average kinetic energy of the molecules inside the nitrous oxide gas.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Part A
A gas consists of a mixture of neon and argon. The
rms speed of the neon atoms is 450 m/s.
What is the rms speed of the argon atoms?
Express your answer with the appropriate units.
µA
Value
Units
Submit
Request Answer
Provide Feedback
The rms speed of the molecules in 1.2 g of hydrogen gas is 1800 m/s.
Part A
What is the total translational kinetic energy of the gas molecules?
Express your answer with the appropriate units.
Etotal = 1.9 kJ
Submit
✓ Correct
Part B
Previous Answers
What is the thermal energy of the gas?
Express your answer with the appropriate units.
Eth = 1944
Submit
μA
Previous Answers Request Answer
Part A
What is the rms speed of nitrogen molecules contained in a 7.7 m³ volume at 4.0 atm if the total amount of nitrogen is 2100 mol ?
Express your answer to two significant figures and include the appropriate units.
HẢ
Value
Units
Vrms =
Submit
Request Answer
Provide Feedback
Chapter 20 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 20.2 - In Example 20.1, we found that the rms value of a...Ch. 20.3 - If the temperature of a gas is doubled, what...Ch. 20.3 - Prob. 20.3CECh. 20.5 - Prob. 20.4CECh. 20.7 - Prob. 20.5CECh. 20.8 - Prob. 20.6CECh. 20 - Prob. 1PQCh. 20 - Prob. 2PQCh. 20 - Prob. 3PQCh. 20 - Prob. 4PQ
Ch. 20 - Prob. 5PQCh. 20 - Prob. 6PQCh. 20 - Prob. 7PQCh. 20 - Prob. 8PQCh. 20 - Particles in an ideal gas of molecular oxygen (O2)...Ch. 20 - Prob. 10PQCh. 20 - Prob. 11PQCh. 20 - Prob. 12PQCh. 20 - Prob. 13PQCh. 20 - Prob. 14PQCh. 20 - The mass of a single hydrogen molecule is...Ch. 20 - Prob. 16PQCh. 20 - The noble gases neon (atomic mass 20.1797 u) and...Ch. 20 - Prob. 18PQCh. 20 - Prob. 19PQCh. 20 - Prob. 20PQCh. 20 - Prob. 22PQCh. 20 - Prob. 23PQCh. 20 - Prob. 24PQCh. 20 - Prob. 25PQCh. 20 - Prob. 26PQCh. 20 - Prob. 27PQCh. 20 - Prob. 28PQCh. 20 - Consider the Maxwell-Boltzmann distribution...Ch. 20 - Prob. 30PQCh. 20 - Prob. 31PQCh. 20 - Prob. 32PQCh. 20 - Prob. 33PQCh. 20 - Prob. 34PQCh. 20 - Prob. 35PQCh. 20 - Prob. 36PQCh. 20 - Prob. 37PQCh. 20 - Prob. 38PQCh. 20 - Prob. 39PQCh. 20 - Prob. 40PQCh. 20 - Prob. 41PQCh. 20 - Prob. 42PQCh. 20 - Prob. 43PQCh. 20 - Prob. 44PQCh. 20 - Figure P20.45 shows a phase diagram of carbon...Ch. 20 - Prob. 46PQCh. 20 - Prob. 47PQCh. 20 - Consider water at 0C and initially at some...Ch. 20 - Prob. 49PQCh. 20 - Prob. 50PQCh. 20 - Prob. 51PQCh. 20 - Prob. 52PQCh. 20 - Prob. 53PQCh. 20 - Prob. 54PQCh. 20 - Prob. 55PQCh. 20 - Prob. 56PQCh. 20 - Consider again the box and particles with the...Ch. 20 - Prob. 58PQCh. 20 - The average kinetic energy of an argon atom in a...Ch. 20 - For the exam scores given in Table P20.60, find...Ch. 20 - Prob. 61PQCh. 20 - Prob. 62PQCh. 20 - Prob. 63PQCh. 20 - Prob. 64PQCh. 20 - Prob. 65PQCh. 20 - Prob. 66PQCh. 20 - Determine the rms speed of an atom in a helium...Ch. 20 - Consider a gas filling two connected chambers that...Ch. 20 - Prob. 69PQCh. 20 - Prob. 70PQCh. 20 - A 0.500-m3 container holding 3.00 mol of ozone...Ch. 20 - Prob. 72PQCh. 20 - Prob. 73PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Air in human lungs has a temperature of 37.0C and a saturation vapor density of 44.0g/m3. (a) If 2.00 L of air is exhaled and very dry air inhaled, what is the maximum loss at water vapor by me person? (b) Calculate the partial pressure of water vapor having this density, and compare it with the vapor pressure of 6.31103N/m2.arrow_forwardA 20.0-L tank of carbon dioxide gas (CO2) is at a pressure of 9.50 105 Pa and temperature of 19.0C (a) Calculate the temperature of the gas in Kelvin. (b) Use the ideal gas law to calculate the number of moles of gas in the tank. (c) Use the periodic table to compute the molecular weight of carbon dioxide, expressing it in grams per mole. (d) Obtain the number of grains of carbon dioxide in the tank. (e) A fire breaks out, raising the ambient temperature by 224.0 K while 82.0 g of gas leak out of the tank. Calculate the new temperature and the number of moles of gas remaining in the tank. (f) Using a technique analogous to that in Example 10.6b, find a symbolic expression for the final pressure, neglecting the change in volume of the tank. (g) Calculate the final pressure in the tank as a result of the fire and leakage.arrow_forwardA high—pressure gas cylinder contains 50.13L of toxic gas at a pressure of 1.40107N/m2 and a temperature of 25.0C. Its value leaks after the cylinder is dropped. The cylinder is cooled to dry ice temperature (78.5C) to reduce the leak rate and pressure so that it can be safely repaired. (a) What is the final pressure in the tank, assuming a negligible amount of gas leaks while being cooled and that there is no phase change? (b) What is the final pressure it onetenth of the gas escapes? (c) To what temperature must the tank be cooled to reduce the pressure to 1.00 atm (assuming the gas does not change phase and that there is no leakage during cooling)? (d) Does cooling the tank appear to be a practical solution?arrow_forward
- Unreasonable Results The temperature inside a supernova explosion is said to be 2.001013K. (a) What would the average velocity vrmsof hydrogen atoms be? (b) What is unreasonable about this velocity? (b) Which premise or assumption is responsible?arrow_forwardUnreasonable Results (a) How many moles per cubic meter of an ideal gas are there at a pressure of 1.001014N/m2 and at 0C ? (b) What is unreasonable about this result? (c) Which premise or assumption is responsible?arrow_forwardHydrogen molecules (molecular mass is equal to 2.016g/mol ) have an average velocity vrmsequal to 193m/s. What is the temperature?arrow_forward
- QUESTION 1 A key result from the kinetic theory of ideal gases is a calculation of the pressure of the gas in terms of the average kinetic energy of translation indicates the average value. As we will learn, particles in a gas have a range of velocities, so angle brackets indicate an average over the different velocities. The result from kinetic theory expresses the pressure p in terms of the average kinetic energy Now for the Question: A room is filled with an ideal gas at a temperature T= 362 K and pressure p = 2 atmospheres (abbreviated atm). The dimensions of the room are 8 m x 8 m x 7 m. Note that 1 atm = 1.013 x 10° Pa, where a pascal (Pa) is aNm (Newton, not number, per meter squared). Calculate the total translational energy, Utrans, of the N molecules in the room, where Utrans = Narrow_forward1arrow_forwardQ9arrow_forwardQUESTION 1 Since the "Deflategate Controversy" in 2015, the official ballgame testing rules for the National Football League has changed: Officials are now required to check the air pressure of the game ball three times: one before the game, one during and one after, to ensure that the ball is not tampered with such as purposefully deflating it. Furthermore, two officials are now required to measure the game-ball, totaling to 6 times that the ball is getting measured to ensure that the football's pressure is correct. Which term best describes the officials' procedure? precision approximation significant figures artifacts reproducibility limit of detectability accuracyarrow_forwardA sample of ideal gas is in a sealed container. The temperature of the gas and the volume of the container are both increased. What other properties of the gas necessarily change? (More than one answer may be correct.)A. The rms speed of the gas atoms B. The thermal energy of the gasC. The pressure of the gas D. The number of molecules of gasarrow_forwardCurrent Attempt in Progress Two gas cylinders are identical. One contains the monatomic gas argon (Ar), and the other contains an equal mass of the monatomic gas krypton (Kr). The pressures in the cylinders are the same, but the temperatures are different. Determine the ratio of the average kinetic energy of a krypton atom to the average kinetic energy of an argon atom. Number Unitsarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning