Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 24PQ
To determine
The gas will retained in the galaxy or not and the explanation about star formation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In the deep space between galaxies, the number density of atoms is as low as 106 atoms/m3, and the temperature is a frigid 2.7 K.
a. What is the pressure, in pascals, in the region between galaxies?
b. What volume, in cubic meters, is occupied by 4.5 mol of gas?
c. If this volume is a cube, what is the length of one of its edges, in kilometers?
A helicopter is moving past some clouds at a velocity of 5 km/hr north relative to the clouds. The clouds are moving past the ground at a velocity of 3.5 km/hr north. How fast is the helicopter going past the ground?
25 km/hr
3.5 km/hr
50 km/hr
O 85 km/hr
In the deep space between galaxies, the number density of atoms is as low as 106 atoms/m3, and the temperature is a frigid 2.7 K.
a)What is the pressure, in pascals, in the region between galaxies?
b)What volume, in cubic meters, is occupied by 1.5 mol of gas?
c)If this volume is a cube, what is the length of one of its edges, in kilometers?
Chapter 20 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 20.2 - In Example 20.1, we found that the rms value of a...Ch. 20.3 - If the temperature of a gas is doubled, what...Ch. 20.3 - Prob. 20.3CECh. 20.5 - Prob. 20.4CECh. 20.7 - Prob. 20.5CECh. 20.8 - Prob. 20.6CECh. 20 - Prob. 1PQCh. 20 - Prob. 2PQCh. 20 - Prob. 3PQCh. 20 - Prob. 4PQ
Ch. 20 - Prob. 5PQCh. 20 - Prob. 6PQCh. 20 - Prob. 7PQCh. 20 - Prob. 8PQCh. 20 - Particles in an ideal gas of molecular oxygen (O2)...Ch. 20 - Prob. 10PQCh. 20 - Prob. 11PQCh. 20 - Prob. 12PQCh. 20 - Prob. 13PQCh. 20 - Prob. 14PQCh. 20 - The mass of a single hydrogen molecule is...Ch. 20 - Prob. 16PQCh. 20 - The noble gases neon (atomic mass 20.1797 u) and...Ch. 20 - Prob. 18PQCh. 20 - Prob. 19PQCh. 20 - Prob. 20PQCh. 20 - Prob. 22PQCh. 20 - Prob. 23PQCh. 20 - Prob. 24PQCh. 20 - Prob. 25PQCh. 20 - Prob. 26PQCh. 20 - Prob. 27PQCh. 20 - Prob. 28PQCh. 20 - Consider the Maxwell-Boltzmann distribution...Ch. 20 - Prob. 30PQCh. 20 - Prob. 31PQCh. 20 - Prob. 32PQCh. 20 - Prob. 33PQCh. 20 - Prob. 34PQCh. 20 - Prob. 35PQCh. 20 - Prob. 36PQCh. 20 - Prob. 37PQCh. 20 - Prob. 38PQCh. 20 - Prob. 39PQCh. 20 - Prob. 40PQCh. 20 - Prob. 41PQCh. 20 - Prob. 42PQCh. 20 - Prob. 43PQCh. 20 - Prob. 44PQCh. 20 - Figure P20.45 shows a phase diagram of carbon...Ch. 20 - Prob. 46PQCh. 20 - Prob. 47PQCh. 20 - Consider water at 0C and initially at some...Ch. 20 - Prob. 49PQCh. 20 - Prob. 50PQCh. 20 - Prob. 51PQCh. 20 - Prob. 52PQCh. 20 - Prob. 53PQCh. 20 - Prob. 54PQCh. 20 - Prob. 55PQCh. 20 - Prob. 56PQCh. 20 - Consider again the box and particles with the...Ch. 20 - Prob. 58PQCh. 20 - The average kinetic energy of an argon atom in a...Ch. 20 - For the exam scores given in Table P20.60, find...Ch. 20 - Prob. 61PQCh. 20 - Prob. 62PQCh. 20 - Prob. 63PQCh. 20 - Prob. 64PQCh. 20 - Prob. 65PQCh. 20 - Prob. 66PQCh. 20 - Determine the rms speed of an atom in a helium...Ch. 20 - Consider a gas filling two connected chambers that...Ch. 20 - Prob. 69PQCh. 20 - Prob. 70PQCh. 20 - A 0.500-m3 container holding 3.00 mol of ozone...Ch. 20 - Prob. 72PQCh. 20 - Prob. 73PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Like most spacecraft returning from orbit, the Apollo command module entered the atmosphere at 7.8 km/s. In front of the capsule was a shock front, the leading edge of the shock front we call a bow shock. Let’s consider the conditions as it passes an altitude of 40,000 feet, at 461 miles per hour. 1a) What are the density, pressure, and temperature behind the shock front? 1b) In the frame of the shock, what is the velocity at which the gas approaches the shock? What is the velocity with which the gas leaves the shock? 1c) In the frame fixed on the Earth, what is the velocity of the post- shock gas?arrow_forwardIn the deep space between galaxies, the number density of atoms is as low as 106 atoms/m3, and the temperature is a frigid 2.7 K. A) What is the pressure, in pascals, in the region between galaxies? B)What volume, in cubic meters, is occupied by 1.5 mol of gas? C)arrow_forward1.1) In a star's core the average mass number for ions which are not hydrogen or helium is 10. The mass fractions of hydrogen is 0.60, of helium is 0.38, and all other elements is 0.02. Calculate the average ion mass in units of mH. 1.2) Explain two assumptions behind the Kelvin-Helmholtz timescale. 1.3) In the outer core of a massive star the temperature is 108 K. The mean particle weight is u = 0.62. Calculate the density of this region if the radiation pressure is equal to the thermal pressure. 1.4) For temperatures around 1.5 x 10' K in a stellar core, describe why it is hydrogen instead of heavier ions which undergo fusion. Also, when the temperature is higher, describe why higher mass ions can undergo fusion. 1.5) Describe two possible causes of convective instability in the outer regions of a low mass star.arrow_forward
- In the deep space between galaxies, the density of atoms is as low as 106 atoms/m3, and the temperature is a frigid 2.7 K. What is the pressure (in Pa)? What volume (in m3) is occupied by 4 mol of gas? If this volume is a cube, what is the length of its sides in kilometers?arrow_forwardModels of the first star-forming clouds indicate that they had a temperature of roughly 150 K and a particle density of roughly 400,000 particles per cubic centimeter at the time they started trapping their internal thermal energy. ▼ Part A Estimate the mass at which thermal pressure balances gravity for these values of pressure and temperature. Express your answer in kilograms. —| ΑΣΦ Mcloud Submit Part B = Mcloud How does that mass compare with the Sun's mass? Express your answer in solar masses. Submit Request Answer = ΤΙ ΑΣΦ Request Answer ? ? kg MSun Reviewarrow_forwardA star such as our Sun will eventually evolve to a “red giant” star and then to a “white dwarf” star. A typical white dwarf is approximately the size of Earth, and its surface temperature is about 2.4 × 104 K. A typical red giant has a surface temperature of 3.2 × 103 K and a radius ~90000 times larger than that of a white dwarf. Take the radius of the red giant to be 6 × 1010 m. What is the average radiated power per unit area of the red giant?_________W/m2 What is the average radiated power per unit area of the white-dwarf?________W/m2 What is the total power radiated by the red giant? _________W What is the total power radiated by the white dwarf? ________W Please show full work! Thank you!arrow_forward
- Supermassive black holes are thought to exist at the center of many galaxies. What is the radius of such an object if it has a mass of 109 Suns?arrow_forwardThe equation of hydrostatic equilibrium is dP/dr = ( −GMr / r2 ) ρ where Mr is the mass interior to the radius r, and ρ is the density.Consider the atmosphere of a star which is isothermal. You may assume that the mass of theatmosphere does not contribute significantly to the total mass of the star, so that the surfacegravity g = GMr/r2 is constant at all heights in the isothermal atmosphere. Assume an idealgas law P = nkT = (ρ/µmH) kT, where µ is the mean molecular weight and mH is the mass of ahydrogen atom. By solving the equation of hydrostatic equilibrium with these approximations, show that P(r) = P(0) exp ((−gµmH/kT)r) Briefly describe the meaning of the expression kT/gµmH. Some white dwarfs have an atmosphere of mostly hydrogen plasma, whereas others have an atmosphere dominated by helium plasma. For the simple model above, briefly discuss what major difference would be seen between these two cases. You can assume the same temperature and surface gravity for the two cases.arrow_forwardIn the deep space between galaxies, the density of atoms is 1 million atoms per m3 (i.e. there are 1 million atoms in a cubic meter), and the temperature is 3 K. (a) What is the pressure in space? (b) What volume (in cubic meters) is occupied by 100 moles of space gas? (c) If this volume is a cube, what is the length of one its sides in kilometers?arrow_forward
- Since 1995, hundreds of extrasolar planets have been discovered. There is the exciting possibility that there is life on one or more of these planets. To support life similar to that on the Earth, the planet must have liquid water. For an Earth-like planet orbiting a star like the Sun, this requirement means that the planet must be within a habitable zone of 0.9 AU to 1.4 AU from the star. The semimajor axis of an extrasolar planet is inferred from its period. What range in periods corresponds to the habitable zone for an Earth-like Planet orbiting a Sun-like star?arrow_forwardQuestion 7arrow_forwardIn 1999, scientists discovered a new class of black holes with masses 100 to 10,000 times the mass of our sun that occupy less space than our moon. Suppose that one of these black holes has a mass of 1x10^3 suns and a radius equal to one-half the radius of our moon. What is the density of the black hole in g/cm^3? The radius of our sun is 7.0x10^5 km, and it has an average density of 1.4x10^3 kg/m^3. The diameter of the moon is 2.16x10^3 miles.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Kinetic Molecular Theory and its Postulates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=o3f_VJ87Df0;License: Standard YouTube License, CC-BY