
(a)
Interpretation:
The activation energy for the isomerization reaction is to be predicted.
Concept introduction:
A small packet of energy is known as quanta. Light is emitted in the form of quanta or photons. The Planck’s law gives the relation between the energy and wavelength, frequency and wavenumber.

Answer to Problem 20.68E
The activation energy for the isomerization reaction is
Explanation of Solution
The given isomerization reaction is,
It is given that the wavelength of least energetic photon is
To calculate the activation energy of given isomerization reaction the formula used is,
Where,
•
•
•
•
Substitute the values of Planck’s constant, speed of light and wavelength of photon in the given formula.
Thus, the energy for theleast energetic photon is
Thus, the activation energy for the isomerization reaction is
The activation energy for the isomerization reaction is
(b)
Interpretation:
The value of pre-exponential factor for the given isomerization reaction is to be calculated.
Concept introduction:
The Arrhenius equation gives the temperature dependence of reaction rates.
Where,
•
•
•
•
•
The pre-exponential factor is also known as the frequency factor or the steric factor.

Answer to Problem 20.68E
The value of pre-exponential factor is
Explanation of Solution
The rate constant for the given isomerization reaction is
The Arrhenius equation can be used for the calculation of activation energy. The Arrhenius equation is,
Where,
•
•
•
•
•
Conversion of temperature in Celsius to Kelvin is done by the formula,
Substitute the temperature
Thus, the given temperature in Kelvin is
Substitute the values of activation energy, gas constant, rate constant and temperature.
The above equation if further solved to obtain the value of pre-exponential factor as shown below.
The value of pre-exponential factor is
The value of pre-exponential factor is
(c)
Interpretation:
The value of the rate constant at
Concept introduction:
The Arrhenius equation gives the temperature dependence of reaction rates.
Where,
•
•
•
•
•
The pre-exponential factor is also known as the frequency factor or the steric factor.

Answer to Problem 20.68E
The value of the rate constant at
Explanation of Solution
It is given that the rate constant at
The form of Arrhenius equation used to calculate the rate constant at different temperature is,
Where,
•
•
•
•
Conversion of temperature in Celsius to Kelvin is done by the formula,
Substitute the temperature
Thus, the temperature
Substitute the values of activation energy, temperatures, the rate constant at
Take inverse of logarithm on both sides of equation to solve for the value of rate constant at
Thus, the value of rate constant at
The value of the rate constant at
Want to see more full solutions like this?
Chapter 20 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
- Choose the right answerarrow_forward3. Draw ALL THE POSSBILE PRODUCTS AND THE MECHANISMS WITH ALL RESONANCE STRUCTURES. Explain using the resonance structures why the major product(s) are formed over the minor product(s). H₂SO4, HONO CHarrow_forward7. Provide the product(s), starting material(s) and/or condition(s) required for the No mechanisms required. below reaction HO + H-I CI FO Br2, FeBr3 O I-Oarrow_forward
- 6. Design the most efficient synthesis of the following product starting from phenot Provide the reaction conditions for each step (more than one step is required) and explain the selectivity of each reaction. NO MECHANISMS ARE REQUIRED. OH step(s) CIarrow_forwardWhat is the skeletal structure of the product of the following organic reaction?arrow_forwardIf a reaction occurs, what would be the major products? Please include a detailed explanation as well as a drawing showing how the reaction occurs and what the final product is.arrow_forward
- What is the major organic product of the following nucleophilic acyl substitution reaction of an acid chloride below?arrow_forwardWould the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forwardIf a reaction occurs, what would be the major products? Please include a detailed explanation as well as a drawing showing how the reaction occurs and what the final product is.arrow_forward
- Please help me answer the following questions using the data I included. 1&2arrow_forwardAssign all the Protons in HNMRarrow_forwardProvide the missing information HO NO2 Br2 FeBr3 to CI HO H₂N NO2 AICI3 Zn(Hg), HCI 1. NBS 2. t-BuONa 1. Br₂, FeBr3 2. CH3CI, AC13 3. Na2Cr2O7 Br NH2 SO3H HO H₂N Brarrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co




