(a)
Interpretation:
The expression for time at which the amount of
Concept introduction:
The rate of a reaction is defined as the speed by which the reaction is proceeding. The
Answer to Problem 20.54E
The expression for time at which the amount of
Explanation of Solution
The
Where,
•
•
•
The derivation of the above expression with respect to time is taken as follows.
For the maximum amount of
The natural logarithm is taken on both sides as shown below.
Therefore, the expression for time at which the amount of
The expression for time at which the amount of
(b)
Interpretation:
The specific amounts of
Concept introduction:
The rate of a reaction is defined as the speed by which the reaction is proceeding. The rate of reaction depends on several factors such as the concentration of reactant and temperature.
Answer to Problem 20.54E
The value of time is
Explanation of Solution
The reaction in Example 20.7 is shown below.
The half-lives,
Conversion of half-lives from days to seconds is shown below.
Substitute
Substitute
The half-lives,
The rate constant for first order reaction is given by the formula shown below.
Where,
•
Substitute
Substitute
The value of
The expression for time is given as follows:
Substitute the value of
The value of
The Equation 20.47 is given as follows.
Where,
•
•
•
•
•
The above expression in terms of concentration of
From the graph in example 20.7, the
Substitute
Substitute
Substitute
Therefore, the specific amounts of
The value of time is
Want to see more full solutions like this?
Chapter 20 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
- Draw all reasonable resonance structures for the following cation. Then draw the resonance hybrid. Provide steps and explanationarrow_forwardHow are the molecules or ions in each pair related? Classify them as resonance structures, isomers, or neither.arrow_forwardWhich of the given resonance structures (A, B, or C) contributes most to the resonance hybrid? Which contributes least? Provide steps and explanationarrow_forward
- Substance X is known to exist at 1 atm in the solid, liquid, or vapor phase, depending on the temperature. Additionally, the values of these other properties of X have been determined: melting point enthalpy of fusion 90. °C 8.00 kJ/mol boiling point 130. °C enthalpy of vaporization 44.00 kJ/mol density 2.80 g/cm³ (solid) 36. J.K mol (solid) 2.50 g/mL (liquid) heat capacity 32. J.Kmol (liquid) 48. J.Kmol (vapor) You may also assume X behaves as an ideal gas in the vapor phase. Ex Suppose a small sample of X at 50 °C is put into an evacuated flask and heated at a constant rate until 15.0 kJ/mol of heat has been added to the sample. Graph the temperature of the sample that would be observed during this experiment. o0o 150- 140 130- 120- 110- 100- G Ar ?arrow_forwardMechanism. Provide the mechanism for the reaction below. You must include all arrows, intermediates, and formal charges. If drawing a Sigma complex, draw all major resonance forms. The ChemDraw template of this document is available on Carmen. Br FeBr3 Brarrow_forwardCheck the box under each compound that exists as a pair of mirror-image twins. If none of them do, check the none of the above box under the table. CH3 OH CH3 CH2 -CH-CH3 CH3 OH OH CH-CH2-CH- -CH3 CH3 CH3 OH OH CH3 C -CH2- C. -CH3 CH3- -CH2- -CH-CH2-OH OH CH3 none of the above كarrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co