
Interpretation:
The equilibrium constant for the reaction is to be calculated.
Concept introduction:
When any reaction is at equilibrium then a constant expresses a relationship between the reactant side and the product side. This constant is known as equilibrium constant. It is denoted by

Answer to Problem 20.44E
The equilibrium constant value of a reaction is
Explanation of Solution
The given reaction is shown below.
The given concentrations and rate are shown below.
The ratio of
Where,
•
•
•
•
•
•
•
•
Substitute first and second columns values for A and B in equation (1).
Hence, the order of reaction with respect to A is one.
Substitute second and third columns values for A and B in equation (1).
Hence, the order of reaction with respect to B is zero.
Hence, the expression for rate law is,
Substitute the first column values for A and B in the above expression.
Thus, the value of
The ratio of rate of the reaction of products is expressed as,
Where,
•
•
•
•
•
•
•
•
Substitute first and second column values for C and D in equation (2).
Hence, the order of reaction with respect to D is one.
Substitute first and second column values for C and D in equation (2).
Hence, the order of reaction with respect to C is zero.
Hence, the expression for rate law is,
Substitute the first column values for C and D in the above expression.
Thus, the value of
The equilibrium constant of a reaction is calculated by the expression as shown below.
Where,
•
•
The forward and reverse rate constant is
Substitute the value of
Hence, the equilibrium constant value of a reaction is
The equilibrium constant value of a reaction is
Want to see more full solutions like this?
Chapter 20 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
- V Biological Macromolecules Drawing the Haworth projection of an aldose from its Fischer projection Draw a Haworth projection of a common cyclic form of this monosaccharide: H C=O HO H HO H H OH CH₂OH Explanation Check Click and drag to start drawing a structure. Xarrow_forwardComplete the mechanismarrow_forwardComplete the mechanismarrow_forward
- 8 00 6 = 10 10 Decide whether each of the molecules in the table below is stable, in the exact form in which it is drawn, at pH = 11. If you decide at least one molecule is not stable, then redraw one of the unstable molecules in its stable form below the table. (If more than unstable, you can pick any of them to redraw.) Check OH stable HO stable Ounstable unstable O OH stable unstable OH 80 F6 F5 stable Ounstable X Save For Later Sub 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy C ཀྭ་ A F7 매 F8 F9 4 F10arrow_forwardJust try completing it and it should be straightforward according to the professor and TAs.arrow_forwardThe grading is not on correctness, so if you can just get to the correct answers without perfectionism that would be great. They care about the steps and reasoning and that you did something. I asked for an extension, but was denied the extension.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning





