The quantity which is represented by ‘x’ on the graph has to be given if the reactants and products are in their standard states. Concept introduction: Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G . All spontaneous process is associated with the decrease of free energy in the system. The standard free energy change (ΔG ° rxn ) is the difference in free energy of the reactants and products in their standard state. ΔG ° rxn = ∑ mΔG f ° (Products)- ∑ nΔG f ° (Reactants) Where, nΔG f ° ( Reactants ) is the standard entropy of the reactants mΔG f ° ( products ) is the standard free energy of the products
The quantity which is represented by ‘x’ on the graph has to be given if the reactants and products are in their standard states. Concept introduction: Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G . All spontaneous process is associated with the decrease of free energy in the system. The standard free energy change (ΔG ° rxn ) is the difference in free energy of the reactants and products in their standard state. ΔG ° rxn = ∑ mΔG f ° (Products)- ∑ nΔG f ° (Reactants) Where, nΔG f ° ( Reactants ) is the standard entropy of the reactants mΔG f ° ( products ) is the standard free energy of the products
Science that deals with the amount of energy transferred from one equilibrium state to another equilibrium state.
Chapter 20, Problem 20.65P
(a)
Interpretation Introduction
Interpretation:
The quantity which is represented by ‘x’ on the graph has to be given if the reactants and products are in their standard states.
Concept introduction:
Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The standard free energy change (ΔG°rxn) is the difference in free energy of the reactants and products in their standard state.
ΔG°rxn=∑mΔGf°(Products)-∑nΔGf°(Reactants)
Where,
nΔGf°(Reactants) is the standard entropy of the reactants
mΔGf°(products) is the standard free energy of the products
(b)
Interpretation Introduction
Interpretation:
In which scene represented point ‘1’ on the given image and reason has to be explained.
Concept introduction:
Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The standard free energy change (ΔG°rxn) is the difference in free energy of the reactants and products in their standard state.
ΔG°rxn=∑mΔGf°(Products)-∑nΔGf°(Reactants)
Where,
nΔGf°(Reactants) is the standard entropy of the reactants
mΔGf°(products) is the standard free energy of the products
(c)
Interpretation Introduction
Interpretation:
In which scene represented point ‘2’ on the given image and reason has to be explained.
Concept introduction:
Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The standard free energy change (ΔG°rxn) is the difference in free energy of the reactants and products in their standard state.
ΔG°rxn=∑mΔGf°(Products)-∑nΔGf°(Reactants)
Where,
nΔGf°(Reactants) is the standard entropy of the reactants
mΔGf°(products) is the standard free energy of the products
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY