CHEMISTRY: THE MOLECULAR NATURE OF MATTE
CHEMISTRY: THE MOLECULAR NATURE OF MATTE
9th Edition
ISBN: 9781265974688
Author: SILBERBERG
Publisher: MCG
bartleby

Concept explainers

Question
Book Icon
Chapter 20, Problem 20.73P
Interpretation Introduction

Interpretation:

The Silver sulfide (Ag2S) solubility product Ksp value has to be determined using the Appendix B.

Concept introduction:

Solubility product: The products of power of ion concentrations, which are dissolved in solvent is known as solubility product and it is it is also known as equilibrium between solute (ionic solids) and its saturated solutions.

  • The solubility product constant (Ksp) is defined as the equilibrium between compound and its ions in an aqueous solution.
  • Solubility product is the multiplication of concentration of dissolved ion, raised to the power of coefficients.
  • Ionic compound A3B Ksp= [A]3[B].
  • Molar solubility is defined as amount of solute that can be dissolved in one liter of solution before it attains saturation.

Free energy changeΔG: change in the free energy takes place while reactants convert to product where both are in standard state. It depends on the equilibrium constant K

  ΔG =ΔGo+RTln(K)ΔGo=ΔHoTΔSo

  Where,

  T is the temperature

  ΔG is the free energy

  ΔGo, ΔHo and ΔSo is standard free energy, enthalpy and entropy values.

Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work.  The free energy is represented by the letter G.  All spontaneous process is associated with the decrease of free energy in the system.  The standard free energy change (ΔG°rxn) is the difference in free energy of the reactants and products in their standard state.

ΔG°rxn=mΔGf°(Products)-nΔGf°(Reactants)

Where,

  nΔGf°(Reactants) is the standard entropy of the reactants

  mΔGf°(products) is the standard free energy of the products

Blurred answer
Students have asked these similar questions
A first order reaction is 46.0% complete at the end of 59.0 minutes. What is the value of k? What is the half-life for this reaction? HOW DO WE GET THERE? The integrated rate law will be used to determine the value of k. In [A] [A]。 = = -kt What is the value of [A] [A]。 when the reaction is 46.0% complete?
3. Provide the missing compounds or reagents. 1. H,NNH КОН 4 EN MN. 1. HBUCK = 8 хно Panely prowseful kanti-chuprccant fad, winddively, can lead to the crading of deduc din-willed, tica, The that chemooices in redimi Грин. " like (for alongan Ridovi MN نيا . 2. Cl -BuO 1. NUH 2.A A -BuOK THE CF,00,H Ex 5)
2. Write a complete mechanism for the reaction shown below. NaOCH LOCH₁ O₂N NO2 CH₂OH, 20 °C O₂N NO2

Chapter 20 Solutions

CHEMISTRY: THE MOLECULAR NATURE OF MATTE

Ch. 20.3 - Prob. 20.6AFPCh. 20.3 - Prob. 20.6BFPCh. 20.3 - Prob. 20.7AFPCh. 20.3 - Prob. 20.7BFPCh. 20.3 - Prob. 20.8AFPCh. 20.3 - Prob. 20.8BFPCh. 20.4 - Prob. 20.9AFPCh. 20.4 - Prob. 20.9BFPCh. 20.4 - Prob. 20.10AFPCh. 20.4 - Prob. 20.10BFPCh. 20.4 - Prob. 20.11AFPCh. 20.4 - Prob. 20.11BFPCh. 20 - Prob. 20.1PCh. 20 - Distinguish between the terms spontaneous and...Ch. 20 - State the first law of thermodynamics in terms of...Ch. 20 - State qualitatively the relationship between...Ch. 20 - Why is ΔSvap of a substance always larger than...Ch. 20 - Prob. 20.6PCh. 20 - Prob. 20.7PCh. 20 - Which of these processes are spontaneous? (a)...Ch. 20 - Prob. 20.9PCh. 20 - Which of these processes are spontaneous? (a)...Ch. 20 - Prob. 20.11PCh. 20 - Prob. 20.12PCh. 20 - Prob. 20.13PCh. 20 - Prob. 20.14PCh. 20 - Prob. 20.15PCh. 20 - Prob. 20.16PCh. 20 - Prob. 20.17PCh. 20 - Prob. 20.18PCh. 20 - Prob. 20.19PCh. 20 - Prob. 20.20PCh. 20 - Prob. 20.21PCh. 20 - Prob. 20.22PCh. 20 - Prob. 20.23PCh. 20 - Prob. 20.24PCh. 20 - Predict which substance has greater molar entropy....Ch. 20 - Without consulting Appendix B, arrange each group...Ch. 20 - Without consulting Appendix B, arrange each group...Ch. 20 - Without consulting Appendix B, arrange each group...Ch. 20 - Without consulting Appendix B, arrange each group...Ch. 20 - In the reaction depicted in the molecular scenes,...Ch. 20 - Describe the equilibrium condition in terms of the...Ch. 20 - Prob. 20.32PCh. 20 - For each reaction, predict the sign and find the...Ch. 20 - For each reaction, predict the sign and find the...Ch. 20 - Find for the combustion of ethane (C2H6) to...Ch. 20 - Find for the combustion of methane to carbon...Ch. 20 - Find for the reaction of nitrogen monoxide with...Ch. 20 - Find for the combustion of ammonia to nitrogen...Ch. 20 - Find for the formation of Cu2O(s) from its...Ch. 20 - Find for the formation of HI(g) from its...Ch. 20 - Find for the formation of CH3OH(l) from its...Ch. 20 - Find for the formation of N2O(g) from its...Ch. 20 - Sulfur dioxide is released in the combustion of...Ch. 20 - Oxyacetylene welding is used to repair metal...Ch. 20 - What is the advantage of calculating free energy...Ch. 20 - Given that ΔGsys = −TΔSuniv, explain how the sign...Ch. 20 - Is an endothermic reaction more likely to be...Ch. 20 - Explain your answers to each of the following for...Ch. 20 - With its components in their standard states, a...Ch. 20 - How can ΔS° for a reaction be relatively...Ch. 20 - Calculate ΔG° for each reaction using ...Ch. 20 - Calculate ΔG° for each reaction using ...Ch. 20 - Prob. 20.53PCh. 20 - Prob. 20.54PCh. 20 - Consider the oxidation of carbon...Ch. 20 - Consider the combustion of butane gas: Predict...Ch. 20 - For the gaseous reaction of xenon and fluorine to...Ch. 20 - For the gaseous reaction of carbon monoxide and...Ch. 20 - One reaction used to produce small quantities of...Ch. 20 - A reaction that occurs in the internal combustion...Ch. 20 - As a fuel, H2(g) produces only nonpolluting H2O(g)...Ch. 20 - The U.S. government requires automobile fuels to...Ch. 20 - If K << 1 for a reaction, what do you know about...Ch. 20 - How is the free energy change of a process related...Ch. 20 - The scenes and the graph relate to the reaction of...Ch. 20 - What is the difference between ΔG° and ΔG? Under...Ch. 20 - Calculate K at 298 K for each reaction: MgCO3(s) ⇌...Ch. 20 - Calculate ΔG° at 298 K for each reaction: 2H2S(g)...Ch. 20 - Calculate K at 298 K for each reaction: HCN(aq) +...Ch. 20 - Calculate ΔG° at 298 K for each reaction: 2NO(g) +...Ch. 20 - Use ΔH° and ΔS° values for the following process...Ch. 20 - Use ΔH° and ΔS° values to find the temperature at...Ch. 20 - Prob. 20.73PCh. 20 - Use Appendix B to determine the Ksp of CaF2. Ch. 20 - For the reaction I2(g) + Cl2(g) ⇌ 2ICl(g),...Ch. 20 - For the reaction CaCO3(s) ⇌ CaO(s) + CO2(g),...Ch. 20 - The Ksp of PbCl2 is 1.7×10−5 at 25°C. What is ΔG°?...Ch. 20 - Prob. 20.78PCh. 20 - The equilibrium constant for the...Ch. 20 - The formation constant for the reaction Ni2+(aq) +...Ch. 20 - Prob. 20.81PCh. 20 - Prob. 20.82PCh. 20 - High levels of ozone (O3) cause rubber to...Ch. 20 - A BaSO4 slurry is ingested before the...Ch. 20 - According to advertisements, “a diamond is...Ch. 20 - Prob. 20.86PCh. 20 - Prob. 20.87PCh. 20 - Prob. 20.88PCh. 20 - Is each statement true or false? If false, correct...Ch. 20 - Prob. 20.90PCh. 20 - Prob. 20.91PCh. 20 - Prob. 20.92PCh. 20 - Prob. 20.93PCh. 20 - Write a balanced equation for the gaseous...Ch. 20 - Prob. 20.95PCh. 20 - Hydrogenation is the addition of H2 to double (or...Ch. 20 - Prob. 20.97PCh. 20 - Prob. 20.98PCh. 20 - Prob. 20.99PCh. 20 - Prob. 20.100PCh. 20 - From the following reaction and data, find (a) S°...Ch. 20 - Prob. 20.102PCh. 20 - Prob. 20.103PCh. 20 - Prob. 20.104PCh. 20 - Prob. 20.105PCh. 20 - Prob. 20.106PCh. 20 - Prob. 20.107PCh. 20 - Consider the formation of ammonia: N2(g) + 3H2(g)...Ch. 20 - Kyanite, sillimanite, and andalusite all have the...Ch. 20 - Prob. 20.110PCh. 20 - Prob. 20.111P
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY