The temperature in which reaction becomes spontaneous and corresponding temperature has to be calculated Concept introduction: Spontaneous process: A process which is initiated by itself, without the help of external energy source is called spontaneous process. All spontaneous process is associated with the decrease in free energy in the system. Entropy is a thermodynamic quantity, which is the measure of randomness in a system. The term entropy is useful in explaining the spontaneity of a process. For all spontaneous process in an isolated system there will be an increase in entropy. Entropy is represented by the letter ‘S’. It is a state function. The change in entropy gives information about the magnitude and direction of a process. Factors like temperature, molar mass, molecular complexity and phase transition occurring in a reaction influences the entropy in a system. Free energy (or) entropy change is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The equation given below helps us to calculate the change in free energy in a system. ΔG o = Δ Η o - T Δ S o Where, ΔG o is the standard change in free energy of the system Δ Η o is the standard change in enthalpy of the system T is the absolute value of the temperature Δ S o is the change in entropy in the system
The temperature in which reaction becomes spontaneous and corresponding temperature has to be calculated Concept introduction: Spontaneous process: A process which is initiated by itself, without the help of external energy source is called spontaneous process. All spontaneous process is associated with the decrease in free energy in the system. Entropy is a thermodynamic quantity, which is the measure of randomness in a system. The term entropy is useful in explaining the spontaneity of a process. For all spontaneous process in an isolated system there will be an increase in entropy. Entropy is represented by the letter ‘S’. It is a state function. The change in entropy gives information about the magnitude and direction of a process. Factors like temperature, molar mass, molecular complexity and phase transition occurring in a reaction influences the entropy in a system. Free energy (or) entropy change is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The equation given below helps us to calculate the change in free energy in a system. ΔG o = Δ Η o - T Δ S o Where, ΔG o is the standard change in free energy of the system Δ Η o is the standard change in enthalpy of the system T is the absolute value of the temperature Δ S o is the change in entropy in the system
Definition Definition State where the components involved in a reversible reaction, namely reactants and product, do not change concentration any further with time. Chemical equilibrium results when the rate of the forward reaction becomes equal to the rate of the reverse reaction.
Chapter 20, Problem 20.110P
(a)
Interpretation Introduction
Interpretation:
The temperature in which reaction becomes spontaneous and corresponding temperature has to be calculated
Concept introduction:
Spontaneous process: A process which is initiated by itself, without the help of external energy source is called spontaneous process. All spontaneous process is associated with the decrease in free energy in the system.
Entropy is a thermodynamic quantity, which is the measure of randomness in a system. The term entropy is useful in explaining the spontaneity of a process. For all spontaneous process in an isolated system there will be an increase in entropy. Entropy is represented by the letter ‘S’. It is a state function. The change in entropy gives information about the magnitude and direction of a process. Factors like temperature, molar mass, molecular complexity and phase transition occurring in a reaction influences the entropy in a system.
Free energy (or) entropy change is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The equation given below helps us to calculate the change in free energy in a system.
ΔGo = ΔΗo- TΔSo
Where,
ΔGo is the standard change in free energy of the system
ΔΗo is the standard change in enthalpy of the system
T is the absolute value of the temperature
ΔSo is the change in entropy in the system
(b)
Interpretation Introduction
Interpretation:
The temperature for the formation of acetylene from carbon and hydrogen has to be calculated.
Concept introduction:
Free energy (or) entropy change is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The equation given below helps us to calculate the change in free energy in a system.
ΔGo = ΔΗo- TΔSo
Entropy is a thermodynamic quantity, which is the measure of randomness in a system. The term entropy is useful in explaining the spontaneity of a process. For all spontaneous process in an isolated system there will be an increase in entropy. Entropy is represented by the letter ‘S’. It is a state function. The change in entropy gives information about the magnitude and direction of a process. The entropy changes associated with a phase transition reaction can be found by the following equation.
Τ =ΔΗoΔSo
Where,
ΔΗo is the change in enthalpy of the system
ΔGo is the standard change in free energy of the system
T is the absolute value of the temperature
(c)
Interpretation Introduction
Interpretation:
The reason for the immediate cooling of reaction mixture has to be identified.
Concept introduction:
Chemical equilibrium: The term applied to reversible chemical reactions. It is the point at which the rate of the forward reaction is equal to the rate of the reverse reaction. The equilibrium is achieved; the concentrations of reactant and products become constant.
Forward Reaction: This type of reaction has involved irreversible, if obtained product cannot be converted back in to respective reactants under the same conditions. Backward Reaction: This type of reaction process involved a reversible, if the products can be converted into a back to reactants.
Thermal decomposition reaction: This reaction caused by heat or decomposition of starting substance is the temperature at which the substance chemically decomposes. In other words large molecules being broken down into single elements (or) compounds.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY