(a)
Interpretation: The sign of change in entropy for the given reaction needs to be determined.
Concept Introduction: Entropy of any substance is defined by its degree of randomness. It increases with the molecular weight of a substance and its complexity. If concentration and pressure increase, the entropy of the substance decreases. Also, it depends on the state of the substance, for example, solid substances have less entropy as compared to liquid and gaseous substances have maximum entropy. For substances in the same state, the substance with higher molecular weight has greater entropy.
(b)
Interpretation: The sign of change in enthalpy of the reaction needs to be determined if the reaction is spontaneous only above
Concept Introduction: The change in Gibbs free energy
Here, T is the absolute temperature.
Want to see the full answer?
Check out a sample textbook solutionChapter 20 Solutions
CHEMISTRY: THE MOLECULAR NATURE OF MATTE
- Some water is placed in a coffee-cup calorimeter. When 1.0 g of an ionic solid is added, the temperature of the solution increases from 21.5C to 24.2C as the solid dissolves. For the dissolving process, what are the signs for Ssys, Ssurr, and Suniv?arrow_forwardHow is the sign of q, heat, defined? How does it relate to the total energy of the system?arrow_forwardWhen solid sodium acetate crystallizes from a supersaturated solution, can you accurately predict the sign of H for the crystallization? Why or why not?arrow_forward
- Define the following: a. spontaneous process b. entropy c. positional probability d. system e. surroundings f. universearrow_forwardCalculate H and G for the following reactions at 25C, using thermodynamic data from Appendix C; interpret the signs of H and G. a 2PbO(s)+N2(g)2Pb(s)+2NO(g)\ b CS2(l)+2H2O(l)CO2(g)+2H2S(g)arrow_forwardFor the reaction NO(g)+NO2(g)N2O3(g) , use tabulated thermodynamic data to calculate H and S. Then use those values to answer the following questions. (a) Is this reaction spontaneous at 25°C? Explain your answer. (b) If the reaction is not spontaneous at 25°C, will it become spontaneous at higher temperatures or lower temperatures? (c) To show that your prediction is accurate, choose a temperature that corresponds to your prediction in part (b) and calculate G . (Assume that both enthalpy and entropy are independent of temperature.)arrow_forward
- For the reaction at 298 K, 2NO2(g)N2O4(g) the values of H and S are 58.03 kJ and 176.6 J/K, respectively. What is the value of G at 298 K? Assuming that H and S do not depend on temperature, at what temperature is G = 0? Is G negative above or below this temperature?arrow_forwardIndicate whether the following processes are spontaneous or nonspontaneous. (a) Liquid water freezing at a temperature below its freezing point (b) Liquid water freezing at a temperature above its freezing point (c) The combustion of gasoline (d) A ball thrown into the air (e) A raindrop falling to the ground (f) Iron rusting in a moist atmospherearrow_forwardSolid NH4NO3 is placed in a beaker containing water at 25 C. When the solid has completely dissolved, the temperature of the solution is 23.5 C. (a) Was the process exothermic or endothermic? (b) Was the process spontaneous? (c) Did the entropy of the system increase? (d) Did the entropy of the universe increase?arrow_forward
- Ethanol burns in air or oxygen according to the equation C2H5OH(l)+3O2(g)2CO2(g)+3H2O(g) Predict the sign of S for this reaction.arrow_forwardDetermine whether each of the following statements is true or false. (a) An exothermic reaction is spontaneous. (b) When G° is positive, the reaction cannot occur under any conditions. (c) S° is positive for a reaction in which there is an increase in the number of moles. d) If H° and S° are both negative, G° will be negative.arrow_forwardThe combustion of acetylene, C2H2, is a spontaneous reaction given by the equation 2C2H2(g)+5O2(g)4CO2(g)+2H2O(l) As expected for a combustion, the reaction is exothermic. What is the sign of H? What do you expect for the sign of S? Explain the spontaneity of the reaction in terms of the enthalpy and entropy changes.arrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning