(a)
To calculate:
The change of standard free energy for the given reaction.
Introduction:
Two components that are closely related forms the Oxidative phosphorylation and they are chemiosmosis and electron transport chain. The electrons are transferred from one molecule to another molecules and the energy that is produced in this transfer is used in the formation of gradient that is
Explanation of Solution
The electron acceptor is
The free change of energy for the reaction is calculated by determining the change of the standard potential,
(b)
To calculate:
The equilibrium constant of the reaction.
Introduction:
Two components that are closely related forms the Oxidative phosphorylation and they are chemiosmosis and electron transport chain. The electrons are transferred from one molecule to another molecules and the energy that is produced in this transfer is used in the formation of gradient that is electrochemical.
Explanation of Solution
(c)
To determine:
The release of the actual free energy accompanying the coenzyme Q reductase of NADH is equal to releasing amount under the normal condition
Introduction:
Two components that are closely related forms the Oxidative phosphorylation and they are chemiosmosis and electron transport chain. The electrons are transferred from one molecule to another molecules and the energy that is produced in this transfer is used in the formation of gradient that is electrochemical.
Explanation of Solution
From the given we have,
So with 75 % efficiency,
For 1 ATP,
With the equation,
The ratio of ATP and ADP maximum for the phosphorylation oxidative occurring at
Want to see more full solutions like this?
- Energetics of the Hexokinase Reaction The standard-state free energy change. Gfor the hexokinase reaction, is — 1 6.7 kJ/mol. Use the values in Table I to calculate the value of Gfor this reaction in the erythrocyte at 37°C.arrow_forwardBiochemists consider the citric acid cycle to be the cen-tral reaction sequence in metabolism. One of the key steps isan oxidation catalyzed by the enzyme isocitrate dehydrogenaseand the oxidizing agent NAD. Under certain conditions, thereaction in yeast obeys 11th-order kinetics Rate=k[enzyme][isocitrate]⁴[AMP]²[NAD⁺]m[Mg²⁺]² What is the order with respect to NAD⁺?arrow_forwardFrom the complete oxidation of glucose (glucose → 6CO2), how many total NADH electron carriers are produced and how many total nucleotide triphosphates are yielded (be sure to deduct payback) as part of substrate level phosphorylation?arrow_forward
- Begining with 1 M concentrations of each reactant and product at pH=7 and 25.0 degrees C, calculate the K'eq (to one decimal point) of the reaction Pyruvate + NADH+H+ <=> Lactate + NAD+.Note the temperature of this reaction will not affect the standard reducton potential delta E'o in the table 13-7b. please provide a comprehensive explanation with each step taken.arrow_forwardPage of 6 ZOOM + name: 3. In the last reaction of the citric acid cycle, malate is dehydrogenated to regenerate the oxaloacetate necessary for the entry of acetyl-CoA into the cycle: L-Malate + NAD+ → oxaloacetate + NADH + H* AG'° = 30.0 kJ/mol (a) Calculate the equilibrium constant for this reaction at 25 °C. (b) Because AG°' assumes a standard pH of 7, the equilibrium constant calculated in (a) corresponds to [oxaloacetate][NADH] Keq [L-malate][NAD*] The measured concentration of L-malate in rat liver mitochondria is about 0.20 mM when [NAD*]/[NADH] is 10. Calculate the concentration of oxaloacetate at pH 7 in these mitochondria. (c) To appreciate the magnitude of the mitochondrial oxaloacetate concentration, calculate the number of oxaloacetate molecules in a single rat liver mitochondrion. Assume the mitochondrion is a sphere of diameter 2.0 microns.arrow_forwardQ5 Lactate dehydrogenase is one of the many enzymes that require NADH as coenzyme. It catalyzes the conversion of pyruvate to lactate: NADH + H* NAD C=0 НО -С—Н lactate dehydrogenase CH3 CH3 Pyruvate L-Lactate Draw the mechanism of this reaction (show electron-pushing arrows). Show all structures and show the movement of electrons. (Hint: This is a common reaction throughout metabolism)arrow_forward
- In beta oxidation of fatty acids in mitochondria, ubiquinone (via FAD / FADH2) from the respiratory chain acts as an oxidizing agent in one oxidation step and NAD + as an oxidizing agent in the other oxidation step. Discuss the exchange of ATP per oxygen molecule consumed in the breakdown of fatty acids into acetyl-COAI in relation to the exchange of ATP perroxygen molecule consumed if only NADH is the electron source for the respiratory chain.arrow_forwardGiven the following information, calculate the physiological ΔG of the isocitrate dehydrogenase reaction at 25°C and pH 7.0: [NAD+]/[NADH] = 8, [α-ketoglutarate] = 0.1 mM, and [isocitrate] = 0.02 mM. Assume standard conditions for CO2 (ΔG°′ is given in Table). Is this reaction a likely site for metabolic control?arrow_forwardT The oxidation of malate by NAD to form oxaloacetate is a highly endergonic reaction under standard conditions. AG° = +29 kJ mol¯¹ (+7 kcal mol¯¹) Malate + NAD+ = oxaloacetate + NADH + H+ The reaction proceeds readily under physiological conditions. Why does the reaction proceed readily as written under physiological conditions? Endergonic reactions such as this occur spontaneously without the input of free energy. The steady-state concentrations of the products are low compared with those of the substrates. The reaction is pushed forward by the energetically favorable oxidation of fumarate to malate. O The NADH produced during glycolysis drives the reaction in the direction of malate oxidation. Assuming an [NAD* ]/[NADH] ratio of 8, a temperature of 25°C, and a pH of 7, what is the lowest [malate]/[oxaloacetate] ratio at which oxaloacetate can be formed from malate? [malate] [oxaloacetate] =arrow_forward
- For lactate dehydrogenase reaction if km for NADH is 2×10^-4 M . What concentration of it would be appropriate for determining Km for pyruvate?arrow_forwardThe enzyme lactate dehydrogenase catalyzes the reversible reaction lactate (CH3 CHOHCOO )+NAD* рyruvate (CH3 COCOO) + NADH + H+ Given the standard reduction potentials CH3 СОСОО + 2H+ + 2е CH3 CHОНСО" E°'= -0. 185 V NADŤ + H+ + 2e- → NADH = -0. 320 V E°' would you expect the reaction to be spontaneous in the forward or reverse direction under biochemical standard state conditions? How could you change the reaction conditions to force the reaction to be spontaneous in the opposite direction? Please explain your answer.arrow_forwardA dialyzed pigeon liver extract will catalyze the conversion of acetyl-CoAto palmitate and CoASH if supplied with Mg2+, NADPH, ATP, HCO3-, andcitrate.(a) If H14CO3– is supplied, what compounds will become labeled (permanently or transiently) during the course of the reaction? In whatcompounds will 14C accumulate?(b) Explain the role of citrate in this reaction.arrow_forward
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage Learning