Concept explainers
(a)
To identify: Whether there is any instant at which the two bicycles have the same velocity.
(a)
Answer to Problem 85GP
Yes, there is one point where the two bicycles have the same velocity. It is when the slopes of both the functions are parallel.
Explanation of Solution
Given:
The given position-time for two bicycles is shown below.
Formula used:
The slope of a function in a position time graph provides the velocity of the moving object.
Calculation:
Consider the given graph. Slopes of parallel lines are equal. B is a straight line, so it will have a constant slope. A is a curve, hence its slope varies while moving from bottom to top. At the point of maximum curvature, A’s slope is the same as B. At this instant, both A and B have the same velocity.
Conclusion:
Therefore, for the given graph there is a point when velocity of both the bicycles is same.
(b)
The bicycle that will have larger acceleration.
(b)
Answer to Problem 85GP
Bicycle A has a larger acceleration.
Explanation of Solution
Given:
The given position-time for two bicycles is shown below.
Formula used:
The slope of a function in a position time graph is the velocity of the moving object.
Calculation:
Bicycle B depicts a straight line in the position time graph. Hence its slope is constant. Since the slope is constant, the acceleration is 0. Bicycle A is represented by a curve, which means that its slope, and hence its velocity changes. From the graph, it is evident that the slope keeps increasing.
Conclusion:
Therefore, bicycle A has a larger acceleration
(c)
The instants at which the bicycles passing each other. Also, the bicycle that will pass the another bicycle.
(c)
Answer to Problem 85GP
At the points of intersections in the graph, the bicycles pass each other. First bicycle B will pass bicycle A and then bicycle A will pass bicycle B.
Explanation of Solution
Given:
The given position-time for two bicycles is shown below.
Calculation:
The graph plots position against time. Thus, it shows the position of an object at different instances of time. If the functions for A and B intersect, then, it means that both A and B are at the same position at that particular instant. Therefore, the bicycles have to pass each other at points of intersections.
From the given graph, it is observed that at the first intersection point bicycle B will pass bicycle but later on at the second point of intersection, bicycle A will pass bicycle B.
Conclusion:
Therefore, both bicycles will meet at point of intersection and will pass each other.
(d)
The bicycle that will have the highest instantaneous velocity.
(d)
Answer to Problem 85GP
Before the instant of time where their velocities are equal, bicycle B has the higher instantaneous velocity after which Bicycle A has the higher velocity.
Explanation of Solution
Given:
The given position-time for two bicycles is shown below.
Formula used:
The slope at particular point of position time graph defines the instantaneous velocity of a moving object.
Calculation:
The slope at a point in the position-time graph gives the velocity of the bicycle at that instant. bicycle B has constant slope since it is a straight line. The slope of the curve representing bicycle A shows an increase from bottom to top. Thus, till the instant where the slopes are equal, bicycle B has a higher instantaneous velocity. After this point, bicycle A, whose slope keeps increasing will have a higher instantaneous velocity.
Conclusion:
Therefore, bicycle B will have greatest instantaneous velocity and then later on A will have greatest velocity.
(e)
The bicycle that will have higher average velocity.
(e)
Answer to Problem 85GP
Both the bicycles must havethe same average velocity.
Explanation of Solution
Given:
The given position-time for two bicycles is shown below.
Formula used:
The slope of a function in a position time graph is the velocity of the moving object. The average velocity is the ratio of total displacement and total time taken
Calculation:
Bicycle B is depicted by a straight line. Its velocity is constant. For A, the displacement is lesser but the total time taken is also lesser. So, the average velocity for both the bicycles A and B should have almost the same value.
Conclusion:
Therefore, both bicycles will have same average velocity.
Chapter 2 Solutions
Physics: Principles with Applications
Additional Science Textbook Solutions
Campbell Biology in Focus (2nd Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Introductory Chemistry (6th Edition)
College Physics: A Strategic Approach (3rd Edition)
Applications and Investigations in Earth Science (9th Edition)
Organic Chemistry (8th Edition)
- Will you please walk me through the calculations in more detail for solving this problem? I am a bit rusty on calculus and confused about the specific steps of the derivation: https://www.bartleby.com/solution-answer/chapter-3-problem-15e-modern-physics-2nd-edition/9780805303087/7cf8c31d-9476-46d5-a5a9-b897b16fe6fcarrow_forwardplease help with the abstract. Abstract - This document outlines the format of the lab report and describes the Excel assignment. The abstract should be a short paragraph that very briefly includes the experiment objective, method, result and conclusion. After skimming the abstract, the reader should be able to decide whether they want to keep reading your work. Both the format of the report and the error analysis are to be followed. Note that abstract is not just the introduction and conclusion combined, but rather the whole experiment in short including the results. I have attacted the theory.arrow_forwardUsing the Experimental Acceleration due to Gravity values from each data table, Data Tables 1, 2, and 3; determine the Standard Deviation, σ, mean, μ, variance, σ2 and the 95% Margin of Error (Confidence Level) Data: Ex. Acc. 1: 12.29 m/s^2. Ex. Acc. 2: 10.86 m/s^2, Ex. Acc. 3: 9.05 m/s^2arrow_forward
- In the Super Smash Bros. games the character Yoshi’s has a “ground pound” down special move where he launches himself downward to attack an enemy beneath him. A) If Yoshi flings himself downwards at 9.76 miles per hour to hit an enemy 10.5 m below him, how fast is Yoshi traveling when he hits the enemy? 1 mile = 1609 m B) How much time does it take Yoshi to hit the enemy beneath him?arrow_forwardNo chatgpt pls will upvotearrow_forwardSolve No chatgpt pls will upvotearrow_forward
- Can someone help me solve this thank you.arrow_forwardNo chatgpt pls will upvotearrow_forward1.62 On a training flight, a Figure P1.62 student pilot flies from Lincoln, Nebraska, to Clarinda, Iowa, next to St. Joseph, Missouri, and then to Manhattan, Kansas (Fig. P1.62). The directions are shown relative to north: 0° is north, 90° is east, 180° is south, and 270° is west. Use the method of components to find (a) the distance she has to fly from Manhattan to get back to Lincoln, and (b) the direction (relative to north) she must fly to get there. Illustrate your solutions with a vector diagram. IOWA 147 km Lincoln 85° Clarinda 106 km 167° St. Joseph NEBRASKA Manhattan 166 km 235° S KANSAS MISSOURIarrow_forward
- Plz no chatgpt pls will upvotearrow_forward3.19 • Win the Prize. In a carnival booth, you can win a stuffed gi- raffe if you toss a quarter into a small dish. The dish is on a shelf above the point where the quarter leaves your hand and is a horizontal dis- tance of 2.1 m from this point (Fig. E3.19). If you toss the coin with a velocity of 6.4 m/s at an angle of 60° above the horizontal, the coin will land in the dish. Ignore air resistance. (a) What is the height of the shelf above the point where the quarter leaves your hand? (b) What is the vertical component of the velocity of the quarter just before it lands in the dish? Figure E3.19 6.4 m/s 2.1arrow_forwardCan someone help me answer this thank you.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON