Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
4th Edition
ISBN: 9780133953145
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 43EAP
A ball rolls along the smooth track shown in FIGURE P2.43. Each segment of the track is straight, and the ball passes smoothly from one segment to the next without changing speed or leaving the track. Draw three vertically stacked graphs showing posit ion, velocity, and acceleration versus time. Each graph should have the same time axis, and the proportions of the graph should be qualitatively correct. Assume that the ball has enough speed to reach the top.
FIGURE P2.43
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is a, b, and c?
A student drives a moped along a straight road as described by the velocity–time graph in Figure P2.58. Sketch this graph in the middle of a sheet of graph paper. (a) Directly above your graph, sketch a graph of the position versus time, aligning the time coordinates of the two graphs. (b) Sketch a graph of the acceleration versus time directly below the velocity–time graph, again aligning the time coordinates. On each graph, show the numerical values of x and ax for all points of inflection. (c) What is the acceleration at t = 6.00 s? (d) Find the position (relative to the starting point) at t = 6.00 s. (e) What is the moped’s final position at t = 9.00 s?
The first astronaut has landed on Mars. Conducting some physics experiments, she drops a hammer from rest from a height of 2.01 m and uses a stopwatch to measure that the hammer takes 1.04 s to hit the ground. A. Determine the magnitude of the acceleration due to gravity on Mars. B. She then throws the hammer straight up into the Martian sky. If she comes back to her hand in 4.20 s, with what speed did she throw it?
Chapter 2 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - FIGURE Q2.4 shows a position-versus-time graph for...Ch. 2 - FIGURE Q2.5 shows a position-versus-time graph for...Ch. 2 - FIGURE Q2.6 shows the position-versus-time graph...Ch. 2 - FIGURE Q2.7 shows the position-versus-time graph...Ch. 2 - FIGURE Q2.8 shows six frames from the motion...Ch. 2 - You’re driving along the highway at a steady speed...Ch. 2 - A bicycle is traveling east. Can its acceleration...
Ch. 2 - (a) Give an example of a vertical motion with a...Ch. 2 - A ball is thrown straight up into the air. At each...Ch. 2 - A rock is thrown (not dropped) straight do from a...Ch. 2 - FIGURE Q2.14 shows the velocity-versus-time graph...Ch. 2 - Alan leaves Los Angeles at 8:00 A.M. to drive to...Ch. 2 - Julie drives 100 mi to Grandmother’s house. On the...Ch. 2 - Larry leaves home at 9:05 and runs at constant...Ch. 2 - FIGURE EX2.4 is the position-versus-time graph of...Ch. 2 - FIGURE EX2.5 shows the position graph of a...Ch. 2 - A particle starts from x0=10matt=0s and moves with...Ch. 2 - FIGURE EX2.7 is a somewhat idealized graph of the...Ch. 2 - FIGURE EX2.8 shows the velocity graph for a...Ch. 2 - FIGURE EX2.9 shows the velocity graph of a...Ch. 2 - FIGURE EX2.7 showed the velocity graph of blood in...Ch. 2 - Prob. 11EAPCh. 2 - FIGURE EX2.1 2 shows the velocity-versus-time...Ch. 2 - a. What constant acceleration, in SI units, must a...Ch. 2 - A jet plane is cruising at 300 m/s when suddenly...Ch. 2 - a. How many days will it take a spaceship to...Ch. 2 - Prob. 16EAPCh. 2 - A speed skater moving to the left across...Ch. 2 - A Porsche challenges a Honda to a 400 m race....Ch. 2 - Acar starts from rest at a stop sign. It...Ch. 2 - Prob. 20EAPCh. 2 - A student standing on the ground throws a ball...Ch. 2 - A rock is tossed straight up from ground level...Ch. 2 - 23. When jumping, a flea accelerates at an...Ch. 2 - Prob. 24EAPCh. 2 - A rock is dropped from the top of a tall building....Ch. 2 - A skier is gliding along at 3.0 m/s on horizontal,...Ch. 2 - A car traveling at 30 m/s runs out of gas while...Ch. 2 - Prob. 28EAPCh. 2 - A snowboarder glides down a 50-m-long, 15° hill....Ch. 2 - A small child gives a plastic frog a big push at...Ch. 2 - FIGURE EX2.31 shows the acceleration-versus-time...Ch. 2 - Prob. 32EAPCh. 2 - A particle moving along the x-axis has its...Ch. 2 - A particle moving along the x-axis has its...Ch. 2 - The position of a particle is given by the...Ch. 2 - The position of a particle is given by the...Ch. 2 - Particles A. B. and C move along the x-axis....Ch. 2 - A block is suspended from a spring, pulled down,...Ch. 2 - A particle’s velocity is described by the function...Ch. 2 - Prob. 40EAPCh. 2 - Prob. 41EAPCh. 2 - A particles velocity is given by the function vx=...Ch. 2 - A ball rolls along the smooth track shown in...Ch. 2 - Draw position, velocity, and acceleration graphs...Ch. 2 - FIGURE P2.45 shows a set of kinematic graphs for a...Ch. 2 - FIGURE P2.46 shows a set of kinematic graphs for a...Ch. 2 - The takeoff speed for an Airbus A320 jetliner is...Ch. 2 - You are driving to the grocery store at 20 m/s....Ch. 2 - You’re driving down the highway late one night at...Ch. 2 - Two cars are driving at the same constant speed on...Ch. 2 - You are playing miniature golf at the golf course...Ch. 2 - The minimum stopping distance for a car traveling...Ch. 2 - A cheetah spots a Thomson’s gazelle, its preferred...Ch. 2 - You are at a train station, standing next to the...Ch. 2 - A 200 kg weather rocket is loaded with 100 kg of...Ch. 2 - A 1000 kg weather rocket is launched straight up....Ch. 2 - A lead ball is dropped into a lake from a diving...Ch. 2 - A hotel elevator ascends 200 m with a maximum...Ch. 2 - A basketball player can jump to a height of 55 cm....Ch. 2 - You are 9.0 m from the door of your bus, behind...Ch. 2 - Ann and Carol are driving their cars along the...Ch. 2 - Amir starts riding his bike up a 200-m-long slope...Ch. 2 - A very slippery block of ice slides down a smooth...Ch. 2 - Bob is driving the getaway car after the big bank...Ch. 2 - One game at the amusement park has you push a puck...Ch. 2 - A motorist is driving at 20 m/s when she sees that...Ch. 2 - Nicole throws a ball straight up. Chad watches the...Ch. 2 - David is driving a steady 30 m/s when he passes...Ch. 2 - A cat is sleeping on the floor in the middle of a...Ch. 2 - Water drops fall from the edge of a roof at a...Ch. 2 - I was driving along at 20 m/s, trying to change a...Ch. 2 - As an astronaut visiting Planet X, you’re assigned...Ch. 2 - Your goal in laboratory is to launch a ball of...Ch. 2 - When a 1984 Alfa Romeo Spider sports car...Ch. 2 - The two masses in FIGURE P2.75 slide on...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - A rocket is launched straight up with constant...Ch. 2 - Careful measurements have been made of Olympic...Ch. 2 - III Careful measurements have been made of Olympic...Ch. 2 - A sprinter can accelerate with constant...Ch. 2 - A rubber ball is shot straight up from the ground...Ch. 2 - The Starship Enterprise returns from warp drive to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An object is at x = 0 at t = 0 and moves along the x axis according to the velocitytime graph in Figure P2.40. (a) What is the objects acceleration between 0 and 4.0 s? (b) What is the objects acceleration between 4.0 s and 9.0 s? (c) What is the objects acceleration between 13.0 s and 18.0 s? (d) At what time(s) is the object moving with the lowest speed? (e) At what time is the object farthest from x = 0? (f) What is the final position x of the object at t = 18.0 s? (g) Through what total distance has the object moved between t = 0 and t = 18.0 s? Figure P2.40arrow_forwardAn animals tracks are frozen in the snow (Fig. P2.2). Can these tracks be used to make a motion diagram? If so, what are the shortcomings of a motion diagram made from these data? If not, why not? Figure P2.2 Problems 2 and 4arrow_forwardAn object moves along the x axis with an acceleration of –6 m/s2 . At an earlier time, the position is 5m and the velocity is 10 m/s. At the later time t = 7 s, the position is –15 m. a.What was the first time? b.What is the velocity at t = 7 s?arrow_forward
- A spacecraft starts from rest, and makes a journey to a destination 355000 km from its starting point. It does so by accelerating at a constant rate of 14.76 m/s^2 up to the midpoint of the journey, and then decelerates at the same constant rate of 14.76 m/s^2 for the second half of the journey, ending at rest. How long did the entire journey take? a. 3 hr 20 min b. 2 hr 43 min c. 1 hr 56 min d. 6 hr 41 minarrow_forwardA particle moves in one dimension in such a way that its velocity is given by v(t) = (8 m/s3)t2 - 10 m/s. Its position at t=0 is 0. a. Find the particle's acceleration at t=5 seconds. b. What is its position at t=2 seconds?arrow_forwardA. Suppose a planner is designing an airport for small airplanes. Such planes must reach a speed of 56 m/s before takeoff and can accelerate at 12.0 m/s2. What is the minimum length for the runway of this airport? B. How long does it take a car to travel 30.0 m if it accelerates from rest at a rate of 2.00 m/s2? C. A baseball pitcher throws a fastball with a speed of 30.0 m/s. Assume the acceleration is uniform and the distance through which the ball is accelerated is 3.50 m. What is the acceleration?arrow_forward
- Caravan Analogy.Consider a highway that has tollbooths every 120 km. Suppose that cars travel at a rate of 120 km/hr (cars have instant acceleration to 120 km/hr and maintain that constant speed between tollbooths). If there is a convoy of 22 cars, and it takes each car an average of 24 seconds to clear the tollbooth, calculate the following. a. Suppose the caravan travels 360 km, beginning in front of one tollbooth, passing through a second and third tollbooth and finishing just after a fourth tollbooth. What is the end-to-end delay, in minutes, from the time the first car goes through tollbooth 1 until the last cargoes through tollbooth 4? b.The cast members of “The Fast and the Furious” show up. Instead of 22 cars, there arenow 18 cars. These 18 cars travel 220 km/hr instead of 120 km/hr. What is the new end-to-end delay in minutes? c. Consider the diagram below. The police are on to the cast of “The Fast and the Furious”. These 18 cars travel 280 km/hr on segments A and B (where…arrow_forwardA particle moves accordingly to a law of motion s = f(t) = t^2 e^−t, t ≥ 0, where t is measured in seconds and s in feet. a. When is the particle speeding up? b. When is the particle slowing down?arrow_forwardMy car can accelerate from a standing start to a speed of v(t)=−0.24t2 +20t ft/sec after t seconds. a. Find the formula for the distance it will travel in the first tt seconds, b. How far will the car travel in the first 15 second?arrow_forward
- An astronaut lands on a newly discovered planet (that has a nice gravitational constant). He proceeds to jump out of the spacecraft and onto the planet's surface. His height above the ground (in feet) after t seconds is given by the function h (t) =-3t2 +12t +36. A. How high off the ground is the astronaut after 1 second? B. What is the astronaut's velocity after 1 second? Is he traveling up or down? C. How fast is the astronaut traveling when he lands on the planet? D. When will the astronaut be at his highest point in the jump? E. Is the astronaut speeding up or slowing down after 2 seconds? At what rate?arrow_forward4. A robotic vehicle is exploring the surface of Mars. The robot, which is represented as a point, has x - and y-coordinates that vary with time: x = (3 − 2t); y = (-t² + 4t³) where x and y are in meters and t is in seconds. a. Find the average velocity of the robot between t = 0s and t = 2s. b. Find the average acceleration of the robot between t = 0s and t = 2s. c. At what time the acceleration of the robot will be zero. a. Vavg= -21 + 14ĵ m/s b. davg = 22ĵ C. m s² 2 t = = = 0.083 s 24arrow_forwardDoes a real automobile have constant acceleration? Measured data for aPorsche 944 Turbo at maximum acceleration are as shown in the table.a. Convert the velocities to m/s, then make a graph of velocity versus time.Based on your graph, is the acceleration constant? Explain.b. Estimate how far the car traveled in the first 10 s.c. Draw a smooth curve through the points on your graph, then use your graph to estimate the car’s acceleration at 2.0 s and 8.0 s. Give your answer in SI units. Hint: Remember that acceleration is the slope of the velocity graph.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY