Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
4th Edition
ISBN: 9780133953145
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 73EAP
Your goal in laboratory is to launch a ball of mass m straight up so that it reaches exactly height h above the top of the launching tube. You and your lab partners will earn fewer points if the ball goes too high or too low. The launch tube uses compressed air to accelerate the ball over a distance d, and you have a table of data telling you how to set the air compressor to achieve a desired acceleration. Find an expression for the acceleration that will earn you maximum points.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the following descriptions of the vertical motion of an object subject only to the acceleration due to gravity. Begin with the acceleration equation a(t) = v'(t) = g, where g= - 9.8 m/s.
a. Find the velocity of the object for all relevant times.
b. Find the position of the object for all relevant times.
c. Find the time when the object reaches its highest point. What is the height?
d. Find the time when the object strikes the ground.
A softball is popped up vertically (from the ground) with a velocity of 25 m/s.
а. v(t)
b. s(t) =
%3D
c. The object's highest point is
m at time t=
S.
(Simplify your answers. Round to two decimal places as needed.)
d. t=
(Simplify your answer. Round to two decimal places as needed.)
A golf ball is thrown straight up from the edge of the roof of a building. A second golf ball is dropped from the roof a time of 1.18 s later. You may ignore air resistance.
Part A
If the height of the building is 20.7 m , what must the initial speed be of the first ball if both are to hit the ground at the same time?
v= m/s
Part B
Consider the same situation, but now let the initial speed v0 of the first ball be given and treat the height h of the building as an unknown. What must the height of the building be for both balls to reach the ground at the same time for v0 = 9.00 m/s .
h= m
A small block has constant acceleration as it slides down a frictionless incline. The block is released from rest at the top of the incline, and its speed after it has traveled 6.00 mm to the bottom of the incline is 3.80 m/sm/s.
A).
What is the speed of the block when it is 4.60 mm from the top of the incline?
Express your answer with the appropriate units.
Chapter 2 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - FIGURE Q2.4 shows a position-versus-time graph for...Ch. 2 - FIGURE Q2.5 shows a position-versus-time graph for...Ch. 2 - FIGURE Q2.6 shows the position-versus-time graph...Ch. 2 - FIGURE Q2.7 shows the position-versus-time graph...Ch. 2 - FIGURE Q2.8 shows six frames from the motion...Ch. 2 - You’re driving along the highway at a steady speed...Ch. 2 - A bicycle is traveling east. Can its acceleration...
Ch. 2 - (a) Give an example of a vertical motion with a...Ch. 2 - A ball is thrown straight up into the air. At each...Ch. 2 - A rock is thrown (not dropped) straight do from a...Ch. 2 - FIGURE Q2.14 shows the velocity-versus-time graph...Ch. 2 - Alan leaves Los Angeles at 8:00 A.M. to drive to...Ch. 2 - Julie drives 100 mi to Grandmother’s house. On the...Ch. 2 - Larry leaves home at 9:05 and runs at constant...Ch. 2 - FIGURE EX2.4 is the position-versus-time graph of...Ch. 2 - FIGURE EX2.5 shows the position graph of a...Ch. 2 - A particle starts from x0=10matt=0s and moves with...Ch. 2 - FIGURE EX2.7 is a somewhat idealized graph of the...Ch. 2 - FIGURE EX2.8 shows the velocity graph for a...Ch. 2 - FIGURE EX2.9 shows the velocity graph of a...Ch. 2 - FIGURE EX2.7 showed the velocity graph of blood in...Ch. 2 - Prob. 11EAPCh. 2 - FIGURE EX2.1 2 shows the velocity-versus-time...Ch. 2 - a. What constant acceleration, in SI units, must a...Ch. 2 - A jet plane is cruising at 300 m/s when suddenly...Ch. 2 - a. How many days will it take a spaceship to...Ch. 2 - Prob. 16EAPCh. 2 - A speed skater moving to the left across...Ch. 2 - A Porsche challenges a Honda to a 400 m race....Ch. 2 - Acar starts from rest at a stop sign. It...Ch. 2 - Prob. 20EAPCh. 2 - A student standing on the ground throws a ball...Ch. 2 - A rock is tossed straight up from ground level...Ch. 2 - 23. When jumping, a flea accelerates at an...Ch. 2 - Prob. 24EAPCh. 2 - A rock is dropped from the top of a tall building....Ch. 2 - A skier is gliding along at 3.0 m/s on horizontal,...Ch. 2 - A car traveling at 30 m/s runs out of gas while...Ch. 2 - Prob. 28EAPCh. 2 - A snowboarder glides down a 50-m-long, 15° hill....Ch. 2 - A small child gives a plastic frog a big push at...Ch. 2 - FIGURE EX2.31 shows the acceleration-versus-time...Ch. 2 - Prob. 32EAPCh. 2 - A particle moving along the x-axis has its...Ch. 2 - A particle moving along the x-axis has its...Ch. 2 - The position of a particle is given by the...Ch. 2 - The position of a particle is given by the...Ch. 2 - Particles A. B. and C move along the x-axis....Ch. 2 - A block is suspended from a spring, pulled down,...Ch. 2 - A particle’s velocity is described by the function...Ch. 2 - Prob. 40EAPCh. 2 - Prob. 41EAPCh. 2 - A particles velocity is given by the function vx=...Ch. 2 - A ball rolls along the smooth track shown in...Ch. 2 - Draw position, velocity, and acceleration graphs...Ch. 2 - FIGURE P2.45 shows a set of kinematic graphs for a...Ch. 2 - FIGURE P2.46 shows a set of kinematic graphs for a...Ch. 2 - The takeoff speed for an Airbus A320 jetliner is...Ch. 2 - You are driving to the grocery store at 20 m/s....Ch. 2 - You’re driving down the highway late one night at...Ch. 2 - Two cars are driving at the same constant speed on...Ch. 2 - You are playing miniature golf at the golf course...Ch. 2 - The minimum stopping distance for a car traveling...Ch. 2 - A cheetah spots a Thomson’s gazelle, its preferred...Ch. 2 - You are at a train station, standing next to the...Ch. 2 - A 200 kg weather rocket is loaded with 100 kg of...Ch. 2 - A 1000 kg weather rocket is launched straight up....Ch. 2 - A lead ball is dropped into a lake from a diving...Ch. 2 - A hotel elevator ascends 200 m with a maximum...Ch. 2 - A basketball player can jump to a height of 55 cm....Ch. 2 - You are 9.0 m from the door of your bus, behind...Ch. 2 - Ann and Carol are driving their cars along the...Ch. 2 - Amir starts riding his bike up a 200-m-long slope...Ch. 2 - A very slippery block of ice slides down a smooth...Ch. 2 - Bob is driving the getaway car after the big bank...Ch. 2 - One game at the amusement park has you push a puck...Ch. 2 - A motorist is driving at 20 m/s when she sees that...Ch. 2 - Nicole throws a ball straight up. Chad watches the...Ch. 2 - David is driving a steady 30 m/s when he passes...Ch. 2 - A cat is sleeping on the floor in the middle of a...Ch. 2 - Water drops fall from the edge of a roof at a...Ch. 2 - I was driving along at 20 m/s, trying to change a...Ch. 2 - As an astronaut visiting Planet X, you’re assigned...Ch. 2 - Your goal in laboratory is to launch a ball of...Ch. 2 - When a 1984 Alfa Romeo Spider sports car...Ch. 2 - The two masses in FIGURE P2.75 slide on...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - A rocket is launched straight up with constant...Ch. 2 - Careful measurements have been made of Olympic...Ch. 2 - III Careful measurements have been made of Olympic...Ch. 2 - A sprinter can accelerate with constant...Ch. 2 - A rubber ball is shot straight up from the ground...Ch. 2 - The Starship Enterprise returns from warp drive to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A rocket accelerates at 25m/s2 from rest on a frictionless inclined surface. The inclined ramp has a height of 70m and makes a 32 degrees angle above the ground. The rocket stops accelerating at the instant it leaves the incline. If air resistance is negligible, what is the horizontal distance 'R' from the end of the ramp to the point of impact (where it hits the ground)? a) Draw a diagram of this situation and be sure to include the distance 'R' b) Calculate the distance 'R' from the end of the ramp to the point of impact. 1.Draw the clear diagram 2. Give the indicating distance 'R' 3. Show your work 4. Find vertical and horizontal components of velocity when rocket leaves ramp 5. Find distance 'R'arrow_forwardA skydiver drops d1 = 475 meters in t1 = 9.5 s before opening his parachute. After the chute opens, he drops an additional d2 = 845 meters in t2 = 99 s. See the figure.Calculate the skydiver’s average speed during the entire fall, vave, in meters per second.arrow_forwardConsider the following descriptions of the vertical motion of an object subject only to the acceleration due to gravity. Begin with the acceleration equation a(t) = ν'(t) = -g, where g = 9.8 m/s2.a. Find the velocity of the object for all relevant times.b. Find the position of the object for all relevant times.c. Find the time when the object reaches its highest point. What is the height?d. Find the time when the object strikes the ground. A payload is dropped at an elevation of 400 m from a hot-air balloonthat is descending at a rate of 10 m/s.arrow_forward
- Consider the following descriptions of the vertical motion of an object subject only to the acceleration due to gravity. Begin with the acceleration equation a(t) = ν'(t) = -g, where g = 9.8 m/s2.a. Find the velocity of the object for all relevant times.b. Find the position of the object for all relevant times.c. Find the time when the object reaches its highest point. What is the height?d. Find the time when the object strikes the ground. A payload is released at an elevation of 400 m from a hot-air balloonthat is rising at a rate of 10 m/s.arrow_forwardConsider the following descriptions of the vertical motion of an object subject only to the acceleration due to gravity. Begin with the acceleration equation a(t) = ν'(t) = -g, where g = 9.8 m/s2.a. Find the velocity of the object for all relevant times.b. Find the position of the object for all relevant times.c. Find the time when the object reaches its highest point. What is the height?d. Find the time when the object strikes the ground. A stone is thrown vertically upward with a velocity of 30 m/sfrom the edge of a cliff 200 m above a river.arrow_forwardA roof worker loses his grip on his box of tools while working on a tall house. His box slides down the roof. The roof is angled at 29 degrees with the horizontal. The roof is made of a frictionless material. The box travels 5 m down the roof and then leaves the edge of it 12 m above the ground. a). Figure out the box's velocity as it leaves the house's roof? b). How far from the base of the house does the box hit the ground? c). By how much does the box clear the yard fence which is 1.8m tall and located 6.7m away from the base of the house? I TOOLS 5m 29° 12 m 1.8m 6-7m ENGLarrow_forward
- You throw a baseball directly upward at time t = 0 at an initial speed of 14.1 m/s. What is the maximum height the ball reaches above where it leaves your hand? Ignore air resistance and take g = 9.80 m/s². maximum height: At what times does the ball pass through half the maximum height? earlier time at half maximum height: later time at half maximum height: marrow_forwardIronman steps from the top of a tall building. He falls freely from rest to the ground a distance of h. He falls a distance of h/ 4 in the last interval of time of 1.1 s of Part A his fall. What is the height h of the building? Hint: First, compute the velocity when Ironman reaches the height equal to the distance fallen. This requires that you do the following: define origin as the bottom of the building. Then use x-x0 = -v0*(t-tO)- (1/2)g(t-t0)^2 where x=0 and xO= (distance fallen) and t-tO is the time interval given. In this formulation, you are going to get magnitude of v0 since you already inserted the sign. Express your answer using two significant figures. 圈] ? h = 392.476 m You then insert v0 that you just calculated into the kinematic equation that involves v, g, and displacement (v^2-v0^2 = 2g(height-(distance fallen)), but now v (which is the final velocity is v0 from above) and v0 in this case is the velocity that the Ironman has Submit Previous Answers Request Answer when…arrow_forwardWhile standing at the edge of the roof of a building, a man throws a stone upward with an initial speed of 5.89 m/s. The stone subsequently falls to the ground, which is 13.1 m below the point where the stone leaves his hand. At what speed does the stone impact the ground? Ignore air resistance and use g = 9.81 m/s2 for the acceleration due to gravity. impact speed: How much time is the stone in the air? elapsed time: m/sarrow_forward
- A small block has constant acceleration as it slides down a frictionless incline. The block is released from rest at the top of the incline, and its speed after it has traveled 6.60 m to the bottom of the incline is 3.80 m/s. Q: What is the speed of the block when it is 3.80 m from the top of the incline?arrow_forwardA student fires a cannonball vertically upwards with a speed of 44.0m/s. Determine all unknowns and answer the following questions. Neglect drag and the initial height and horizontal motion of the cannonball. What was the cannonball's maximum height? unit v How long did the cannonball rise? unit What was the cannonball's total flight time? unitarrow_forwardA rocket-powered hockey puck moves on a horizontal frictionless table. the figure(Figure 1) shows graphs of vx and vy, the x- and y-components of the puck's velocity. The puck starts at the origin. How far from the origin is the puck at t = 10 s ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Vectors and 2D Motion: Crash Course Physics #4; Author: CrashCourse;https://www.youtube.com/watch?v=w3BhzYI6zXU;License: Standard YouTube License, CC-BY