Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
4th Edition
ISBN: 9780133953145
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 37EAP
Particles A. B. and C move along the x-axis. Particle C has an initial velocity of 10 m/s. In FIGURE P2.37, the graph for A is a position-versus-time graph; the graph for B is a velocity-versus-time graph; the graph (or C is an acceleration-versus-time graph. Find each particle’s velocity at t = 7.0 s.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A student drives a moped along a straight road as described by the velocity–time graph in Figure P2.58. Sketch this graph in the middle of a sheet of graph paper. (a) Directly above your graph, sketch a graph of the position versus time, aligning the time coordinates of the two graphs. (b) Sketch a graph of the acceleration versus time directly below the velocity–time graph, again aligning the time coordinates. On each graph, show the numerical values of x and ax for all points of inflection. (c) What is the acceleration at t = 6.00 s? (d) Find the position (relative to the starting point) at t = 6.00 s. (e) What is the moped’s final position at t = 9.00 s?
An object is moving with constant non-zero velocity in the +x direction. The velocity versus time graph of this object is
a horizontal straight line.
b vertical straight line.
c parabolic curve.
d straight line making an angle with the time axis.
I am doing a lab report for my physics class. The lab consists of throwing a ball upward and recording its movements. Please explain these next questions and how you got the answer.
Determine the launch velocity of the ball from the velocity vs. time graphs in the x and y directions. Is this value reasonable? Determine the velocity of the ball at its highest point. Is this value reasonable?
Chapter 2 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - FIGURE Q2.4 shows a position-versus-time graph for...Ch. 2 - FIGURE Q2.5 shows a position-versus-time graph for...Ch. 2 - FIGURE Q2.6 shows the position-versus-time graph...Ch. 2 - FIGURE Q2.7 shows the position-versus-time graph...Ch. 2 - FIGURE Q2.8 shows six frames from the motion...Ch. 2 - You’re driving along the highway at a steady speed...Ch. 2 - A bicycle is traveling east. Can its acceleration...
Ch. 2 - (a) Give an example of a vertical motion with a...Ch. 2 - A ball is thrown straight up into the air. At each...Ch. 2 - A rock is thrown (not dropped) straight do from a...Ch. 2 - FIGURE Q2.14 shows the velocity-versus-time graph...Ch. 2 - Alan leaves Los Angeles at 8:00 A.M. to drive to...Ch. 2 - Julie drives 100 mi to Grandmother’s house. On the...Ch. 2 - Larry leaves home at 9:05 and runs at constant...Ch. 2 - FIGURE EX2.4 is the position-versus-time graph of...Ch. 2 - FIGURE EX2.5 shows the position graph of a...Ch. 2 - A particle starts from x0=10matt=0s and moves with...Ch. 2 - FIGURE EX2.7 is a somewhat idealized graph of the...Ch. 2 - FIGURE EX2.8 shows the velocity graph for a...Ch. 2 - FIGURE EX2.9 shows the velocity graph of a...Ch. 2 - FIGURE EX2.7 showed the velocity graph of blood in...Ch. 2 - Prob. 11EAPCh. 2 - FIGURE EX2.1 2 shows the velocity-versus-time...Ch. 2 - a. What constant acceleration, in SI units, must a...Ch. 2 - A jet plane is cruising at 300 m/s when suddenly...Ch. 2 - a. How many days will it take a spaceship to...Ch. 2 - Prob. 16EAPCh. 2 - A speed skater moving to the left across...Ch. 2 - A Porsche challenges a Honda to a 400 m race....Ch. 2 - Acar starts from rest at a stop sign. It...Ch. 2 - Prob. 20EAPCh. 2 - A student standing on the ground throws a ball...Ch. 2 - A rock is tossed straight up from ground level...Ch. 2 - 23. When jumping, a flea accelerates at an...Ch. 2 - Prob. 24EAPCh. 2 - A rock is dropped from the top of a tall building....Ch. 2 - A skier is gliding along at 3.0 m/s on horizontal,...Ch. 2 - A car traveling at 30 m/s runs out of gas while...Ch. 2 - Prob. 28EAPCh. 2 - A snowboarder glides down a 50-m-long, 15° hill....Ch. 2 - A small child gives a plastic frog a big push at...Ch. 2 - FIGURE EX2.31 shows the acceleration-versus-time...Ch. 2 - Prob. 32EAPCh. 2 - A particle moving along the x-axis has its...Ch. 2 - A particle moving along the x-axis has its...Ch. 2 - The position of a particle is given by the...Ch. 2 - The position of a particle is given by the...Ch. 2 - Particles A. B. and C move along the x-axis....Ch. 2 - A block is suspended from a spring, pulled down,...Ch. 2 - A particle’s velocity is described by the function...Ch. 2 - Prob. 40EAPCh. 2 - Prob. 41EAPCh. 2 - A particles velocity is given by the function vx=...Ch. 2 - A ball rolls along the smooth track shown in...Ch. 2 - Draw position, velocity, and acceleration graphs...Ch. 2 - FIGURE P2.45 shows a set of kinematic graphs for a...Ch. 2 - FIGURE P2.46 shows a set of kinematic graphs for a...Ch. 2 - The takeoff speed for an Airbus A320 jetliner is...Ch. 2 - You are driving to the grocery store at 20 m/s....Ch. 2 - You’re driving down the highway late one night at...Ch. 2 - Two cars are driving at the same constant speed on...Ch. 2 - You are playing miniature golf at the golf course...Ch. 2 - The minimum stopping distance for a car traveling...Ch. 2 - A cheetah spots a Thomson’s gazelle, its preferred...Ch. 2 - You are at a train station, standing next to the...Ch. 2 - A 200 kg weather rocket is loaded with 100 kg of...Ch. 2 - A 1000 kg weather rocket is launched straight up....Ch. 2 - A lead ball is dropped into a lake from a diving...Ch. 2 - A hotel elevator ascends 200 m with a maximum...Ch. 2 - A basketball player can jump to a height of 55 cm....Ch. 2 - You are 9.0 m from the door of your bus, behind...Ch. 2 - Ann and Carol are driving their cars along the...Ch. 2 - Amir starts riding his bike up a 200-m-long slope...Ch. 2 - A very slippery block of ice slides down a smooth...Ch. 2 - Bob is driving the getaway car after the big bank...Ch. 2 - One game at the amusement park has you push a puck...Ch. 2 - A motorist is driving at 20 m/s when she sees that...Ch. 2 - Nicole throws a ball straight up. Chad watches the...Ch. 2 - David is driving a steady 30 m/s when he passes...Ch. 2 - A cat is sleeping on the floor in the middle of a...Ch. 2 - Water drops fall from the edge of a roof at a...Ch. 2 - I was driving along at 20 m/s, trying to change a...Ch. 2 - As an astronaut visiting Planet X, you’re assigned...Ch. 2 - Your goal in laboratory is to launch a ball of...Ch. 2 - When a 1984 Alfa Romeo Spider sports car...Ch. 2 - The two masses in FIGURE P2.75 slide on...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - A rocket is launched straight up with constant...Ch. 2 - Careful measurements have been made of Olympic...Ch. 2 - III Careful measurements have been made of Olympic...Ch. 2 - A sprinter can accelerate with constant...Ch. 2 - A rubber ball is shot straight up from the ground...Ch. 2 - The Starship Enterprise returns from warp drive to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At time t = 0, a particle has a velocity of m v = 4.00. The following graph shows the particles a(t) S acceleration vs. time. a. What was the particle's velocity at t = 3.00s ? 2 4 t b. What was the particle's instantaneous acceleration time(s) at t = 3.00s ? С. What was the average acceleration between t = 1.00s and t = 3.00s ? 4- 2. acceleration(m/s)arrow_forwardA particle moves along the x axis beginning at x = −2 m at time zero. The particle moves forward at speed 4 m/s for 3 seconds, then backward at 3 m/s for 2 seconds, then forward again at 1 m/s for 3 seconds. Draw a position vs. time graph for this motion. Draw a velocity vs. time graph for the same motion.arrow_forwardA toy car can move to the right or left along a horizontal line (the positive portion of the distance axis). The positive direction is to the right. 0 + Choose the correct velocity-time graph (A - H) for each of the following questions. You may use a graph more than once or not at all. If you think that none is correct, answer choice J. A B D V e e 1 e + 0 0 0 e 0 1 0 Time Time Time Time E G H V 1 V + 0 e 0 1 0 0 None of these graphs is correct. Time Time Time Time Which velocity graph shows the car moving toward the left (toward the origin) at a steady (constant) velocity?arrow_forward
- The first astronaut has landed on Mars. Conducting some physics experiments, she drops a hammer from rest from a height of 2.01 m and uses a stopwatch to measure that the hammer takes 1.04 s to hit the ground. A. Determine the magnitude of the acceleration due to gravity on Mars. B. She then throws the hammer straight up into the Martian sky. If she comes back to her hand in 4.20 s, with what speed did she throw it?arrow_forwardThe acceleration of a bus is given by ax(t)=αt, where a = 1.20 m/s3 is a constant. I. If the bus's velocity at time t1 = 1.00 s is 4.90 m/s, what is its velocity of time t2 = 2.15 s? (Express your answer in meters per second.) II. If the bus's position at time t1= 1.00 s is 5.95 m, what is its position at time t2 = 2.15 s? (Express your answer in meters.)arrow_forwardWe are standing on the top of a 1040 feet tall building and launch a small object upward. The object's height, measured in feet, after t seconds is h(t) = 16t? + 128t + 1040. A) What is the object initial velocity? ft/second B) What is the highest point that the object reaches? feetarrow_forward
- A bug crawls across a large window. The position of the bug is given by to following equation: x(t) = (0.300 m) + (0.125 m/s) t- (0.00620 m/s²) t² a. Find an expression for the velocity of the bug as a function of time. b. Find an expression for the acceleration of the bug as a function of time. c. Find the initial position, velocity and acceleration of the bug. d. At what time is the velocity of the bug zero? e. How long does it take for the bug to return to its starting point?arrow_forwardShown below is a graph of velocity-versus-time for a moving object. The object starts at position x = 0 m at t = 0 s. What is the final position at t = 4.0 s, in meters?arrow_forwardShown below is a graph of velocity-versus-time for a moving object. The object starts at position x = 0 m at t = 0 s. What is the final position at t = 4.0 s, in meters?arrow_forward
- The acceleration of a bus is given by ax(t) = αt, where α = 1.15 m/s3 is a constant. a. If the bus's velocity at time t1 = 1.05 s is 4.90 m/s, what is its velocity at time t2 = 2.20 s? b. If the bus's position at time t1 = 1.05 s is 6.05 m, what is its position at time t2 = 2.20 s?arrow_forwardA scooter begins at rest at t0 = 0 seconds. The scooter starts moving, and eventually covers a distance d = 727 m, in a time tf = 189 s. In a coordinate system with north being the positive x-direction, the scooter's motion is in the northern direction A: What was the scooter's displacement in the northern direction during this period, in meters? B: What was the scooter's average velocity in in the northern direction vavg,N, in this period in meters per second? C: If the scooter's final velocity at tf was 12 m/s, what was the scooter's average acceleration in the northern direction, aavg,N, during this period in m/s2?arrow_forwardHello. I am working on a problem with motion. The questions asks me to calculate the maximum height (h1), total time (t2), and speed of a ball right before it hits the ground. The question states that A person is throwing a ball upward into the air with an initial speed Vo = 10m/s. Assume that the instant when the ball is released, the person's hand is at a height ho = 1.5m. The speed of the ball at its peak height is zero, and the question needs to be solved in ascending part and descending part. I don't understand how to solve for the maximum height. What is the correct formula to use and why? For other questions like this, I will be able to solve them if I know the formulas for the ascending of the ball and the descent of the ball as well as the explanation. Thank you. For the sake of the question, the ball is being thrown straight up.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY