Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
4th Edition
ISBN: 9780133953145
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 8EAP
FIGURE EX2.8 shows the velocity graph for a particle having initial position .x0= 0 m at t0= 0 s. At what time or limes is (he particle found a x = 35 m?
FIGURE EX2.8
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At time t = 0, a particle has a velocity of
m
v = 4.00. The following graph shows the particles
a(t)
S
acceleration vs. time.
a. What was the particle's velocity at t = 3.00s ?
2
4
t
b. What was the particle's instantaneous acceleration
time(s)
at t = 3.00s ?
С.
What was the average acceleration between t = 1.00s and t = 3.00s ?
4-
2.
acceleration(m/s)
Situation 01. Samantha has a height of 1.83 meters measured from the ground surface. She then lifts
a rock and throw it straight upward giving it an upward acceleration coming from rest of 35.0 m/s?
for 64cm. The ball was released 2.20m above the ground.
a. How high above the ground does the rock go?
b. Compute the time she must get out of its way before it returns exactly at her height.
Samantha has a height of 1.83m measured from the ground surface. She then lifts a rock and throw it straight upward giving it upward acceleration coming from rest of 35 m/s2 for 64cm. The ball has released 2.20m above the ground.
A. How high above the ground does the rock up?
B. Compute the time she must get out of its way.
Chapter 2 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - For Questions 1 through 3, interpret the position...Ch. 2 - FIGURE Q2.4 shows a position-versus-time graph for...Ch. 2 - FIGURE Q2.5 shows a position-versus-time graph for...Ch. 2 - FIGURE Q2.6 shows the position-versus-time graph...Ch. 2 - FIGURE Q2.7 shows the position-versus-time graph...Ch. 2 - FIGURE Q2.8 shows six frames from the motion...Ch. 2 - You’re driving along the highway at a steady speed...Ch. 2 - A bicycle is traveling east. Can its acceleration...
Ch. 2 - (a) Give an example of a vertical motion with a...Ch. 2 - A ball is thrown straight up into the air. At each...Ch. 2 - A rock is thrown (not dropped) straight do from a...Ch. 2 - FIGURE Q2.14 shows the velocity-versus-time graph...Ch. 2 - Alan leaves Los Angeles at 8:00 A.M. to drive to...Ch. 2 - Julie drives 100 mi to Grandmother’s house. On the...Ch. 2 - Larry leaves home at 9:05 and runs at constant...Ch. 2 - FIGURE EX2.4 is the position-versus-time graph of...Ch. 2 - FIGURE EX2.5 shows the position graph of a...Ch. 2 - A particle starts from x0=10matt=0s and moves with...Ch. 2 - FIGURE EX2.7 is a somewhat idealized graph of the...Ch. 2 - FIGURE EX2.8 shows the velocity graph for a...Ch. 2 - FIGURE EX2.9 shows the velocity graph of a...Ch. 2 - FIGURE EX2.7 showed the velocity graph of blood in...Ch. 2 - Prob. 11EAPCh. 2 - FIGURE EX2.1 2 shows the velocity-versus-time...Ch. 2 - a. What constant acceleration, in SI units, must a...Ch. 2 - A jet plane is cruising at 300 m/s when suddenly...Ch. 2 - a. How many days will it take a spaceship to...Ch. 2 - Prob. 16EAPCh. 2 - A speed skater moving to the left across...Ch. 2 - A Porsche challenges a Honda to a 400 m race....Ch. 2 - Acar starts from rest at a stop sign. It...Ch. 2 - Prob. 20EAPCh. 2 - A student standing on the ground throws a ball...Ch. 2 - A rock is tossed straight up from ground level...Ch. 2 - 23. When jumping, a flea accelerates at an...Ch. 2 - Prob. 24EAPCh. 2 - A rock is dropped from the top of a tall building....Ch. 2 - A skier is gliding along at 3.0 m/s on horizontal,...Ch. 2 - A car traveling at 30 m/s runs out of gas while...Ch. 2 - Prob. 28EAPCh. 2 - A snowboarder glides down a 50-m-long, 15° hill....Ch. 2 - A small child gives a plastic frog a big push at...Ch. 2 - FIGURE EX2.31 shows the acceleration-versus-time...Ch. 2 - Prob. 32EAPCh. 2 - A particle moving along the x-axis has its...Ch. 2 - A particle moving along the x-axis has its...Ch. 2 - The position of a particle is given by the...Ch. 2 - The position of a particle is given by the...Ch. 2 - Particles A. B. and C move along the x-axis....Ch. 2 - A block is suspended from a spring, pulled down,...Ch. 2 - A particle’s velocity is described by the function...Ch. 2 - Prob. 40EAPCh. 2 - Prob. 41EAPCh. 2 - A particles velocity is given by the function vx=...Ch. 2 - A ball rolls along the smooth track shown in...Ch. 2 - Draw position, velocity, and acceleration graphs...Ch. 2 - FIGURE P2.45 shows a set of kinematic graphs for a...Ch. 2 - FIGURE P2.46 shows a set of kinematic graphs for a...Ch. 2 - The takeoff speed for an Airbus A320 jetliner is...Ch. 2 - You are driving to the grocery store at 20 m/s....Ch. 2 - You’re driving down the highway late one night at...Ch. 2 - Two cars are driving at the same constant speed on...Ch. 2 - You are playing miniature golf at the golf course...Ch. 2 - The minimum stopping distance for a car traveling...Ch. 2 - A cheetah spots a Thomson’s gazelle, its preferred...Ch. 2 - You are at a train station, standing next to the...Ch. 2 - A 200 kg weather rocket is loaded with 100 kg of...Ch. 2 - A 1000 kg weather rocket is launched straight up....Ch. 2 - A lead ball is dropped into a lake from a diving...Ch. 2 - A hotel elevator ascends 200 m with a maximum...Ch. 2 - A basketball player can jump to a height of 55 cm....Ch. 2 - You are 9.0 m from the door of your bus, behind...Ch. 2 - Ann and Carol are driving their cars along the...Ch. 2 - Amir starts riding his bike up a 200-m-long slope...Ch. 2 - A very slippery block of ice slides down a smooth...Ch. 2 - Bob is driving the getaway car after the big bank...Ch. 2 - One game at the amusement park has you push a puck...Ch. 2 - A motorist is driving at 20 m/s when she sees that...Ch. 2 - Nicole throws a ball straight up. Chad watches the...Ch. 2 - David is driving a steady 30 m/s when he passes...Ch. 2 - A cat is sleeping on the floor in the middle of a...Ch. 2 - Water drops fall from the edge of a roof at a...Ch. 2 - I was driving along at 20 m/s, trying to change a...Ch. 2 - As an astronaut visiting Planet X, you’re assigned...Ch. 2 - Your goal in laboratory is to launch a ball of...Ch. 2 - When a 1984 Alfa Romeo Spider sports car...Ch. 2 - The two masses in FIGURE P2.75 slide on...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - In Problems 76 through 79, you are given the...Ch. 2 - A rocket is launched straight up with constant...Ch. 2 - Careful measurements have been made of Olympic...Ch. 2 - III Careful measurements have been made of Olympic...Ch. 2 - A sprinter can accelerate with constant...Ch. 2 - A rubber ball is shot straight up from the ground...Ch. 2 - The Starship Enterprise returns from warp drive to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- the would be a realistic position graph. 20. What are the signs (positive or nega- tive) of the (a) position y, (b) velocity V. and (c) acceleration a, for the particle in Figure P2.207 FIGURE P2.20 0arrow_forwardWhen given a velocity vs. time graph, draw the corresponding position vs. time and acceleration vs. time graphs. Graphs should include labels (including numerical values and correct units) for both the horizontal and vertical axes. The values don't have to be exactly right, but they should be relatively close. If possible, find the slope and apply it to a real life situation.arrow_forwardSamantha has a height of 1.83 meters measured from the ground surface. She then lifts a rock and throw it straight upward giving it an upward acceleration coming from rest of 35.0 m/s^2 for 64 cm. The vall was released 2.20 m above the ground. a. How high above the ground does the rock go? b. Compute the time she must get out of its way before it returns exactly at her height.arrow_forward
- A. 1.84m/s^2 B. 1.95 m/s^2 C. 8.66 m/s^2 D. Cannot be determinedarrow_forwardA ball rolls down from the top of an inclined plane. The displacements for the first 3 seconds are 2.40 m, 9.84 m, and 22.00 m. a. What is the average velocity of the ball at the end of 1s? 2s? 3s? b. What is the average acceleration of the ball at the end of 1s? 2s? 3s? c. What is the average of the accelerations obtained in (b)?arrow_forwardJayce threw his softball high in the air as Yukari looked down from her-storey home to see how high he threw it. Jayce threw his ball high enough to reach the floor of the second storey. If jayce threw the ball at an initial velocity of 30 m/s, and an initial height of 1.22 m, with one storey equivalent to at least 3.05 meters. 1. How fast is the ball after 0.2 seconds? 2. With the initial values, how high the ball fly after 3 seconds?arrow_forward
- During a video game, a point on the screen moved 16.6 cm in the positive y direction and then 13.6 cm in the negative x direction, all in a time of 4.2s. a. What was the point's average velocity during this time? (Magnitude only) b. What was its average speed?arrow_forwardA red-eye tree frog jumps straight up to a vertical height of 1.10 m. Take ?=9.80m/s2. 1. What is its initial speed? 2. How long was it in the air before returning to the ground? 3. What is its velocity at t=0.500 s?arrow_forwardYou are driving down a straight road at night in your McLaren MCL34 Formula 1 racecar at an entirely illegal speed of 98 m/s when Bambi and Thumper jump onto the road in front of you. Because you were texting while driving (also illegal), your reaction time is a rather slow; 1.3 seconds before your foot touches the brake. How far did you travel during this time? O a. 98 m O b. 127 m O c. 101 m O d. 134 m O e. 112 m Clear my choicearrow_forward
- The position of a particle is 7 (t) = (4ta + 6y – 2tâ) m. a. Determine its velocity and acceleration as a function of time. 히(t) = 2) m/s á(t) = 2) m/s2 b. What are its velocity and acceleration at time t = 0? 6(t = 0) = Select an answer m/s a(t = 0) = %3D Select an answer O m/s-arrow_forwardAn object is thrown up from the top of a building that is 30.8 m high. The object is thrown with a velocity of 16.4 m/s. At the same time the object is thrown upwards, a person runs along the ground with a constant speed of 2.8 m/s. a. When the object hits the ground, how far has the person gone in meters?arrow_forwardGiven the equation of the displacement x of a certain object at any time t x = 2t + 3t² + 10, in meter a. What is the velocity of the object at time t = 5 seconds? b. What is the acceleration of the object at time t = 10 seconds? Note: Velocity is the first derivative of displacement. Acceleration is the second derivative of displacement.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY