Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 31P
(a)
To determine
The negative acceleration experienced by the person.
(b)
To determine
The distance travelled by the person during the negative acceleration.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A thief is trying to escape from a parking garage after completing a robbery, and the thief’s car is speeding (v = 18.5 m/s) toward the door of the parking garage (Fig. P2.60). When the thief is L = 30 m from the door a police officer flips a switch to close the garage door. The door starts at a height of 5.5 m and moves downward at 0.5 m/s. If the thief’s car is 1.4 m tall, will the thief escape? (Find the height of the door above the ground).
Colonel John P. Stapp, USAF, participated in studying whether a jet pilot could survive emergency ejection. On March 19, 1954, he rode a rocket-propelled sled that moved down a track at a speed of 632 mi/h (see figure below). He and the sled were safely brought to rest in 1.40 s.
(a) Determine in SI units the negative acceleration he experienced. (m/s2)
(b) Determine in SI units the distance he traveled during this negative acceleration. (m)
Colonel John P. Stapp, USAF, participated in studying whether a jet pilot could survive emergency ejection. On March 19, 1954, he rode a rocket-propelled sled that moved down a track at a speed of 632 mi/h. He and the sled were safely brought to rest in 1.40 s.
(a) Determine the negative acceleration he experienced (in m/s2).
answer: -202m/s^2
(b) Determine the distance he traveled during this negative acceleration (in m).
answer: 198 m
(c) What If? Col. Stapp was able to walk away from this experiment. If the human body can survive a negative acceleration five times that experienced by Col. Stapp, what minimum stopping time (in s) would this correspond to in the 1954 experiment?
______________s
Chapter 2 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are officers in the highway patrol more interested...Ch. 2.4 - Make a velocitytime graph for the car in Figure...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which one of the following statements is true? (a)...Ch. 2.6 - In Figure 2.12, match each vxt graph on the top...Ch. 2.7 - Consider the following choices: (a) increases, (b)...Ch. 2 - Prob. 1OQCh. 2 - A racing car starts from rest at t = 0 and reaches...Ch. 2 - Prob. 3OQ
Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 5OQCh. 2 - Prob. 6OQCh. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - Prob. 8OQCh. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - Prob. 10OQCh. 2 - Prob. 11OQCh. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A pebble is released from rest at a certain height...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - Prob. 17OQCh. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - If the average velocity of an object is zero in...Ch. 2 - Prob. 2CQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - (a) Can the velocity of an object at an instant of...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Position, Velocity, and Speed The position versus...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - Prob. 6PCh. 2 - A positiontime graph for a particle moving along...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - Prob. 21PCh. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - Prob. 24PCh. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - Prob. 26PCh. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - A truck covers 40.0 m in 8.50 s while smoothly...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - Prob. 31PCh. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - Prob. 33PCh. 2 - Why is the following situation impossible?...Ch. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A glider of length moves through a stationary...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Prob. 41PCh. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - The speed of a bullet as it travels down the...Ch. 2 - Prob. 60APCh. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - Prob. 62APCh. 2 - Prob. 63APCh. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - Prob. 65APCh. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - An elevator moves downward in a tall building at a...Ch. 2 - Prob. 68APCh. 2 - Prob. 69APCh. 2 - Prob. 70APCh. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 72APCh. 2 - Prob. 73APCh. 2 - Prob. 74APCh. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 76APCh. 2 - Prob. 77APCh. 2 - Prob. 78APCh. 2 - Prob. 79APCh. 2 - Prob. 80APCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - In a womens 100-m race, accelerating uniformly,...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A thief is trying to escape from a parking garage after completing a robbery, and the thief's car is speeding (v = 12 m/s) toward the door of the parking garage (Fig. P2.60). When the thief is L= 30 m from the door, a police officer flips a switch to close the garage door. The door starts at a height of 2.0 m and moves downward at 0.20 m/s. If the thief's car is 1.4 m tall, will the thief escape? Garage door L Figure P2.60arrow_forwardDr. John Paul Stapp was a U.S. Air Force officer who studied the effects of extreme deceleration on the human body. On December 10, 1954, Stapp rode a rocket sled, accelerating from rest to a top speed of 282 m/s (1015 km/h) in 5.00 s, and was brought jarringly back to rest in only 1.40 s!Calculate the magnitude of his average acceleration during the first part of his motion. Express your answer in multiples of g by taking its ratio to 9.80 m/s2. calculate the magnitude his average deceleration during the second part of his motion. Express your answer in multiples of g by taking its ratio to 9.80 m/s2.arrow_forwardColonel John P. Stapp, USAF, participated in studying whether a jet pilot could survive emergency ejection. Ôn March 19, 1954, he rod a rocket-propelled sled that moved down a track at a speed of 632 mi/h (see figure below). He and the sled were safely brought to res in 1.40 s. (a) Determine in SI units the negative acceleration he experienced. m/s² (b) Determine in SI units the distance he traveled during this negative acceleration. left, Courtesy U.S. Air Force; right, Photri, Inc.arrow_forward
- Colonel John P. Stapp, USAF, participated in studying whether a jet pilot could survive emergency ejection. On March 19, 1954, he rode a rocket-propelled sled that moved down a track at a speed of 632 mi/h (see figure below). He and the sled were safely brought to rest in 1.40 s. . (a) Determine in SI units the negative acceleration he experienced.arrow_forwardAn object is at x = 0 at t = 0 and moves along the x axis according to the velocity-time graph in Figure P2.62. (a) What is the object’s acceleration between 0 and 4.0 s? (b) What is the object's acceleration between 4.0 s and 9.0 s? (c) What is the object's acceleration between 13.0 s and 18.0 s? (d) At what time(s) is the object moving with the lowest speed? (e) At what time is the object farthest from x = 0? (1) What is the final position x of the object at t = 18.0 s? (g) Through what total distance has the object moved between t = 0 and t = 18.0 s?arrow_forwardI need help on p 2.22. I am so confused.arrow_forward
- The engineer of a passenger train traveling at 25.0 m/s sights a freight train whose caboose is 200 m ahead on the same track (Fig. P2.62). The freight train is traveling at 15.0 m/s in the same direction as the passenger train. The engineer of the passenger train immediately applies the brakes causing a constant acceleration of 0.100 m/s in a direction opposite to the train’s velocity, while the freight train continues with constant speed. Take x = 0 at the location of the front of the passenger train when the engineer applies the brakes. (a) Will the cows nearby witness a collision? (b) If so, where will it take place? (c) On a single graph, sketch the positions of the front of the passenger train and the back of the freight trainarrow_forwardI tried asking this question before but I got a blank response. How do I find how far the jet traveled before stopping?arrow_forwardPlease answer this, I need help.arrow_forward
- A car starts from rest and accelerates at a constant 10 m/s2 during aquarter-mile (402 m) race. How fast is the car going at the finish line? I know the answer to this problem is 90 m/s, but I don't know how the book i found it in came to this answer. How am I supposed to solve this problem without knowing either final velocity or time?arrow_forwardA student holds a ball 1.55 meters above the ground and drops it. Her friend uses a stopwatch and measures a time of 0.57 seconds for the ball to hit the ground. The ball accelerates due to gravity. Using the equation y = 1/2??2 where y is the height, to compute g , calculate the acceleration of the ball.arrow_forwardYou are driving along Lawrence Ave. at 60 km/h. You see the traffic light ahead is still green and decide to speed up to try to make it through the intersection before it turns red (poor decision!). Your car accelerates at 1.3 m/s. You reach the light after accelerating for 4.3 seconds. What is your speed at the light in m/s? V =v, +aAt A: Pictorial Representation Sketch showing events, describe events, coordinate system, label givens & unknowns with symbols, conversions B: Physics Representation Motion diagram, motion graphs, velocity vectors, events a C: Word Representation Describe motion (no numbers),-assumptions, estimated result (no calculation) D: Mathematical Representation Describe physics of steps, complete equations, algebraically isolate, substitutions with units, final statement of prediction E: Evaluation Answer has reasonable size, direction and units? Why?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY