Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 38P
(a)
To determine
The position of particle at the moment of changing its direction.
(b)
To determine
The velocity of particle on returning to the point when it was at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particle is moving in three dimensions and its position vector is given by;
r(t) = (4t² + 1.7t) î + (1.5t − 2.1)ĵ + (2.7t³ + 2t) k
where r is in meters and t is in seconds. Determine the magnitude of the instantaneous velocity at t = 3s. Express your answer in units of m/s using one decimal
place.
Answer:
A particle moves along the x axis. Its position is given by the equation
x = 2.5 + 2.6t − 3.5t2
with x in meters and t in seconds.
A computer model displays the motion of a particle on a coordinate system in real time. At time t = 0, the particle is at the origin of the
coordinate system and has velocity components v₁ = 0 and
"x
Vy = 6.8 m/s. The particle has acceleration components of ax = -3.2 m/s²
and = 0.
ay
(a) What are the x and y positions of the particle, in meters, at t = 4.0 s?
X =
y =
Vx
Vy
m
(b) What are velocity components of the particle, in m/s, at t = 4.0 s?
m/s
m/s
=
m
(c) How does the speed of the particle change from t = 0 to t = 4.0 s?
O The particle's speed remains constant.
O The particle's speed decreases with time.
O The particle's speed increases and then decreases with time.
O The particle's speed increases with time.
Chapter 2 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are officers in the highway patrol more interested...Ch. 2.4 - Make a velocitytime graph for the car in Figure...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which one of the following statements is true? (a)...Ch. 2.6 - In Figure 2.12, match each vxt graph on the top...Ch. 2.7 - Consider the following choices: (a) increases, (b)...Ch. 2 - Prob. 1OQCh. 2 - A racing car starts from rest at t = 0 and reaches...Ch. 2 - Prob. 3OQ
Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 5OQCh. 2 - Prob. 6OQCh. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - Prob. 8OQCh. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - Prob. 10OQCh. 2 - Prob. 11OQCh. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A pebble is released from rest at a certain height...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - Prob. 17OQCh. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - If the average velocity of an object is zero in...Ch. 2 - Prob. 2CQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - (a) Can the velocity of an object at an instant of...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Position, Velocity, and Speed The position versus...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - Prob. 6PCh. 2 - A positiontime graph for a particle moving along...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - Prob. 21PCh. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - Prob. 24PCh. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - Prob. 26PCh. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - A truck covers 40.0 m in 8.50 s while smoothly...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - Prob. 31PCh. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - Prob. 33PCh. 2 - Why is the following situation impossible?...Ch. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A glider of length moves through a stationary...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Prob. 41PCh. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - The speed of a bullet as it travels down the...Ch. 2 - Prob. 60APCh. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - Prob. 62APCh. 2 - Prob. 63APCh. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - Prob. 65APCh. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - An elevator moves downward in a tall building at a...Ch. 2 - Prob. 68APCh. 2 - Prob. 69APCh. 2 - Prob. 70APCh. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 72APCh. 2 - Prob. 73APCh. 2 - Prob. 74APCh. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 76APCh. 2 - Prob. 77APCh. 2 - Prob. 78APCh. 2 - Prob. 79APCh. 2 - Prob. 80APCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - In a womens 100-m race, accelerating uniformly,...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A particle moves along the x axis. Its position is given by the equation x = 2 + 3t 4t2, with x in meters and t in seconds. Determine (a) its position when it changes direction and (b) its velocity when it returns to the position it had at t = 0.arrow_forwardA particle moves along the x axis according to the equation x=2.00 + 3.00t - 1.00t², where x is in meters and t is in seconds. At t=3.00s, find (a) the position of the particle, (b) its velocity, and (c) its acceleration.arrow_forwardA particle’s velocity along the x-axis is described by v(x) = A x + B x2, where x is in meters, v is in meters per second, A = 3.56, and B = -1.5 what is the acceleration, in meters per second squared, of the particle position at x = 2.31m?arrow_forward
- A particle’s acceleration is (4.0iˆ+3.0jˆ)m/s2.(4.0i^+3.0j^)m/s2. At t = 0, its position and velocity are zero. (a) What are the particle’s position and velocity as functions of time? (b) Find the equation of the path of the particle. Draw the x- and y-axes and sketch the trajectory of the particle.arrow_forwardAn object has position given by the vector r = [3.0m + (6.0m/s)t] i + [2.0m - (2.0m/s2)t2] j, where quantities are in SI units. What is the speed of the object at t = 3.0s?arrow_forwardA particle starts from the origin at t=0 with a velocity of 7.8 and moves in the xy plane with a constant acceleration of (4.4î + 3.0)) m/s² .At the instant the particle's x coordinate is 29 m, what are (a) its y coordinate and (b) its speed? (a) Number (b) Number 48 IM Units m Units m/sarrow_forward
- A particle moves along the x axis. Its position is given by the equation x=2+3t−4t 2 , with x in meters and t in seconds. Determine (a) its position when it changes direction and (b) its velocity when it returns to the position it had at t=0.arrow_forwardAn athlete is training on a 100 m long linear track. His motion is described by the graph of his position vs. time, below. x (m) 100- 80 60 40 20 direction VA magnitude VB direction VB magnitude v с تو سفر direction VC magnitude VD A 10 B C 4 20 30 40 (a) For each segment of the graph, find the magnitude and direction of the athlete's velocity. 0 magnitude VA X D 50 positive x 60 Remember that velocity is the change in position per the change in time. If the graph plots position vs. time, what property of the plot in each segment is related to velocity? Think about the initial and final times and positions for each segment. m/s The magnitude is zero. ✓ X -1.33 X t (s) Remember that velocity is the change in position per the change in time. If the graph plots position vs. time, what property of the plot in each segment is related to velocity? Think about the initial and final times and positions for each segment. m/s negative x X Remember that velocity is the change in position per the…arrow_forwardAn ion's position vector is initially 7 = (-3,9 m )i + (-8.6 m )j + (-3.4 m )k, and 9.3 s later it is 7 = (-2.6 m )i + (7.3 m )ĵ + (1.0 m )R. In unit-vector notation, what is its average velocity during the 9.3 s? Number i k Units m/sarrow_forward
- Problem 2: The position of a particle is given by the following expression, where t is time measured in seconds: r(t) = [(3.65 m/s?)f²]į+ (-4.23 m)j + [(4.48 m/s³)r*]k. Part (a) What is the magnitude of the velocity of the particle, in m/s, at t = 0.00 s? Part (b) What is the magnitude of the velocity of the particle, in m/s, at t = 1.65 s? Part (c) What angle, in degrees, does the velocity of the particle make with the +z axis at t = 1.65 s? Part (d) What is the magnitude of the average velocity, in m/s, betweent = 0.00 s and t = 1.65 s? Part (e) What angle, in degrees, does the average velocity between t = 0.00 s and t = 1.65 s make with the z axis?arrow_forwardThe position of a particle is defined byr = {20 cos t i+ 8 sint j}m, where t is in seconds and the arguments for the sine and cosine are given in radians. Determine the magnitudes of the velocity and acceleration of the particle when t = 3 s.arrow_forwardNerve impulses in a human body travel at a speed of about 100 m/s. Suppose a person accidentally steps barefoot on a pebble. About how much time does it take the nerve impulse to travel from the foot to the brain (in s)? Assume the person is 1.60 m tall and the nerve impulse travels at uniform speed.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY