Concept explainers
(a)
The distance between the nose of car and the south edge when the car stops.
(a)
Answer to Problem 81CP
The distance between the nose of car and the south edge when the car stops is
Explanation of Solution
Write the expression for the final position of the nose of the car.
Here,
The initial position of the car is zero. Put
Write the expression for the final velocity of the car.
Here,
Rearrange expression (III) to find
Conclusion:
Substitute
Since the blue car stops at the intersection, final velocity is zero.
Substitute
Therefore, the distance between the nose of car and the south edge when the car stops is
(b)
The time interval in which the car is in the boundaries of intersection.
(b)
Answer to Problem 81CP
The time in which the car is in the boundaries of intersection is
Explanation of Solution
The time for which the car is in the intersection is the time between the entering of nose and exiting of tail from the intersection. Thus the total distance travelled by the car between the intersections is equal to the sum of length of car and length of the intersection path. Thus the change in position of nose of the car is equal to
Write the expression for the final position of car at time
The car starts from origin, so
Expression (V) is a quadratic equation.
Write the general expression for a quadratic equation in terms of
Here,
Write the expression to find the solution for quadratic equation (VI).
Conclusion:
Substitute
Compare the above quadratic expression with (VI) to obtain the values of constants.
Substitute
Thus the time values are
Therefore, the time in which the car is in the boundaries of intersection is
(c)
The minimum distance from the near edge of intersection where the red car can start its motion after the complete leaving of blue car.
(c)
Answer to Problem 81CP
The minimum distance from the near edge of intersection where the red car can starts its motion after the complete leaving of blue car is
Explanation of Solution
The nose of the blue car enters the intersection at
Again use expression (I) to find the distance between near edge and nose of car.
Conclusion:
Substitute
Therefore, the minimum distance from the near edge of intersection where the red car can starts its motion after the complete leaving of blue car is
(d)
The speed of red car when it enters the intersection.
(d)
Answer to Problem 81CP
The speed of red car when it enters the intersection is
Explanation of Solution
Write the expression to find the velocity of red car.
Conclusion:
Substitute
Therefore, the speed of red car when it enters the intersection is
Want to see more full solutions like this?
Chapter 2 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- Find the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d. Ag dFe = 2.47 ×arrow_forwardFind the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d Ag = 2.51 dFe ×arrow_forwardShow that the units 1 v2/Q = 1 W, as implied by the equation P = V²/R. Starting with the equation P = V²/R, we can get an expression for a watt in terms of voltage and resistance. The units for voltage, V, are equivalent to [? v2 v2 A, are equivalent to J/C ✓ X . Therefore, 1 = 1 = 1 A V1 J/s Ω V-A X = 1 W. . The units for resistance, Q, are equivalent to ? The units for current,arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning