Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 2OQ
A racing car starts from rest at t = 0 and reaches a final speed v at time t. If the acceleration of the car is constant during this time, which of the following statements are true? (a) The car travels a distance vt. (b) The average speed of the car is v/2. (c) The magnitude of the acceleration of the car is v/t. (d) The velocity of the car remains constant. (e) None of statements (a) through (d) is true.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A train, traveling at a constant speed of 22.0 m/s, comes to an incline with a constant slope. While going up the incline, the train slows down with a constant acceleration of magnitude 1.40 m/s2.
(A) What is the speed of the train after 7.20 s on the incline?
(B) How far has the train traveled up the incline after 7.20 s?
A motorcycle starts from rest at t=0,, and attains a final speed U at time t. If the
motorcycle's acceleration is constant (but not equal to 0) throughout the journey,
which of the following statements are true?
The motorcycle traveled a total distance of vt.
The motorcydle's average speed is v/2.
The magnitude of the motorcycle's acceleration is0/t,
The motorcydle's velocity is constant for the entire journey.
None of the above statements are true.
An object moves along the x axis according to the equation x = 2.85t2 − 2.00t + 3.00, where x is in meters and t is in seconds.
(a) Determine the average speed between t = 2.60 s and t = 4.50 s.(b) Determine the instantaneous speed at t = 2.60 s.Determine the instantaneous speed at t = 4.50 s.(c) Determine the average acceleration between t = 2.60 s and t = 4.50 s.(d) Determine the instantaneous acceleration at t = 2.60 s.Determine the instantaneous acceleration at t = 4.50 s.(e) At what time is the object at rest?
Chapter 2 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are officers in the highway patrol more interested...Ch. 2.4 - Make a velocitytime graph for the car in Figure...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which one of the following statements is true? (a)...Ch. 2.6 - In Figure 2.12, match each vxt graph on the top...Ch. 2.7 - Consider the following choices: (a) increases, (b)...Ch. 2 - Prob. 1OQCh. 2 - A racing car starts from rest at t = 0 and reaches...Ch. 2 - Prob. 3OQ
Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 5OQCh. 2 - Prob. 6OQCh. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - Prob. 8OQCh. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - Prob. 10OQCh. 2 - Prob. 11OQCh. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A pebble is released from rest at a certain height...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - Prob. 17OQCh. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - If the average velocity of an object is zero in...Ch. 2 - Prob. 2CQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - (a) Can the velocity of an object at an instant of...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Position, Velocity, and Speed The position versus...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - Prob. 6PCh. 2 - A positiontime graph for a particle moving along...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - Prob. 21PCh. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - Prob. 24PCh. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - Prob. 26PCh. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - A truck covers 40.0 m in 8.50 s while smoothly...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - Prob. 31PCh. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - Prob. 33PCh. 2 - Why is the following situation impossible?...Ch. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A glider of length moves through a stationary...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Prob. 41PCh. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - The speed of a bullet as it travels down the...Ch. 2 - Prob. 60APCh. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - Prob. 62APCh. 2 - Prob. 63APCh. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - Prob. 65APCh. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - An elevator moves downward in a tall building at a...Ch. 2 - Prob. 68APCh. 2 - Prob. 69APCh. 2 - Prob. 70APCh. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 72APCh. 2 - Prob. 73APCh. 2 - Prob. 74APCh. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 76APCh. 2 - Prob. 77APCh. 2 - Prob. 78APCh. 2 - Prob. 79APCh. 2 - Prob. 80APCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - In a womens 100-m race, accelerating uniformly,...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A train, traveling at a constant speed of 22.0 m/s, comes to an incline with a constant slope. While going up the incline, the train slows down with a constant acceleration of magnitude 1.40 m/s2. (a) Which of the following is a graph of vx vs. t where the x-axis points up the incline? (b) What is the speed of the train after 7.20 s on the incline? (c)How far has the train traveled up the incline after 7.20 s?arrow_forwardA train, traveling at a constant speed of 22.0 m/s, comes to an incline with a constant slope. While going up the incline, the train slows down with a constant acceleration of magnitude 1.40 m/s2. What is the speed of the train after 7.40 s on the incline?arrow_forwardMotion along a Line with Constant Acceleration. A car is speeding up and has an instantaneous velocity of 1.0 m/s in the +x-direction when a stopwatch reads 10.0 s. It has a constant acceleration of 2.0 m/s² in the x-direction. (a) What change in speed occurs between t = 10.0 s and t= 12.0 s? (b) What is the speed when the stopwatch reads 12.0 s?arrow_forward
- An object moves along the y axis according to the equation y = 1.25t3 - 5.00t + 2.50, where y is in meters and t is in seconds. Determine (a) the average speed between t = 1.00 s and t = 4.00 s, (b) the instantaneous speed at t = 1.00 s and at t = 4.00 s, (c) the average acceleration between t = 1.00 s and t = 4.00 s, and (d) the instantaneous acceleration at t = 1.00 s and t = 4.00 s. (e) At what time is the object at rest?arrow_forward(a) What is the magnitude of the average acceleration of a skier who, starting from rest, reaches a speed of 10.8 m/s when going down a slope for 3.36 s? (b) How far does the skier travel in this time?arrow_forwardYou are standing at rest at a bus stop. A bus moving at a constant speed of 5.00 m>s passes you. When the rear of the bus is 12.0 m past you, you realize that it is your bus, so you start to run toward it with a constant acceleration of 0.960 m>s 2 . How far would you have to run before you catch up with the rear of the bus, and how fast must you be running then? Would an average college student be physically able to accomplish this?arrow_forward
- An object accelerating at constant acceleration (a) has an initial velocity v0 (at t=0), a velocity v at time t, and goes a particular distance d or x - x0 during the time interval. Derive the expression relating v0, v, a, and d (or x-x0). The relation must not include time. You may use either algebra or calculus.arrow_forwardAn object moves along the x-axis according to the equation x(t) = (3.00 t² -2.00 +3.00) m, where t is in seconds. Determine: a) the average speed between t = 2.00 s and t = 3.00 s b) the instantaneous speed at t = 2.00 s and at t = 3.00 s c) the average acceleration between t = 2.00 s and t = 3.00 s d) the instantaneous acceleration at t = 2.00 s and t = 3.00 s.arrow_forwardA car travels in a straight line along a road. The car’s distance x from a stop sign is given as a function of time t by the equation below. (a) Calculate the average velocity, in m/s, of the car for the time interval, t = 0 s and t= 2 s. (b) Calculate the instantaneous velocity, in m/s, of the car at t = 2.00 sarrow_forward
- An unmarked police car traveling a constant 95 km/h is passed by a speeder. Precisely 2.00 s after the speeder passes, the police officer steps on the accelerator. If the police car accelerates uniformly at 3.00 m/s2 and overtakes the speeder after accelerating for 6.00 s , what was the speeder's speed? v= km/harrow_forwardA car travels along a straight line at a constant speed of 56.5 mi/h for a distanced and then another distance d in the same direction at another constant speed. The average velocity for the entire trip is 28.0 mi/h. (a) What is the constant speed with which the car moved during the second distance d? mi/h (b) Suppose the second distance d were traveled in the opposite direction; you forgot something and had to return home at the same constant speed as found in part (a). What is the average velocity for this trip? (Enter the magnitude.) mi/h (c) What is the average speed for this new trip?arrow_forwardA train accelerates uniformly from rest at station A to a maximum speed of 72 km/h. The constant maximum speed is maintained for a period of time and the train then decelerates uniformly until it comes to a stop at station B. The distance between the two railway stations is 22 km and the journey takes 20 minutes. If the magnitude of the acceleration is half that of deceleration,determine the acceleration during which the train travels at its maximum speed.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY