Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 82CP
(a)
To determine
The time interval at which the bicycle is ahead of the car.
(b)
To determine
The maximum distance the bicycle will lead the car.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two cars both cover a straight distance, d = 223 m, in time t = 19.5 s. Car A moves at a constant
velocity (vA). Car B moves at a constant acceleration (aB), starting from an initial velocity of vOB
= 7.6 m/s. Assume both cars are moving in the positive x-direction.
Part (a) What is the velocity of Car A?
Part (b) What is the final velocity of Car B?
What is the acceleration of Car B?
A blue car travels down a straight road at a constant speed of 18.8 m/s. As they pass a red car, initially stopped on the side of the road, the red car speeds up at a rate of 1.77 m/s2. How much distance (in m) does the red car travel before it overtakes the blue car?
Hi, I am doing problem number 2 from the end of the chapter questions in my textbook. The problem reads as such:
"An 18-year-old runner can complete a 10.0-km course with an average speed of 4.39 m/s. A 50-year-old runner can cover the same distance with an average speed of 4.27 m/s. How much later (in seconds) should the younger runner start in order to finish the course at the same time as the older runner?"
I am looking at the solution for the problem and I did everything right except the last step. The solution says to subtract the time found for the 18 year old to run 10km from the time found for the 50 year old to run 10km. However, I divided the anwers I found. Why are we subtracting the answers from one another and not dividing them? Thank you!
Chapter 2 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are officers in the highway patrol more interested...Ch. 2.4 - Make a velocitytime graph for the car in Figure...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which one of the following statements is true? (a)...Ch. 2.6 - In Figure 2.12, match each vxt graph on the top...Ch. 2.7 - Consider the following choices: (a) increases, (b)...Ch. 2 - Prob. 1OQCh. 2 - A racing car starts from rest at t = 0 and reaches...Ch. 2 - Prob. 3OQ
Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 5OQCh. 2 - Prob. 6OQCh. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - Prob. 8OQCh. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - Prob. 10OQCh. 2 - Prob. 11OQCh. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A pebble is released from rest at a certain height...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - Prob. 17OQCh. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - If the average velocity of an object is zero in...Ch. 2 - Prob. 2CQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - (a) Can the velocity of an object at an instant of...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Position, Velocity, and Speed The position versus...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - Prob. 6PCh. 2 - A positiontime graph for a particle moving along...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - Prob. 21PCh. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - Prob. 24PCh. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - Prob. 26PCh. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - A truck covers 40.0 m in 8.50 s while smoothly...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - Prob. 31PCh. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - Prob. 33PCh. 2 - Why is the following situation impossible?...Ch. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A glider of length moves through a stationary...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Prob. 41PCh. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - The speed of a bullet as it travels down the...Ch. 2 - Prob. 60APCh. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - Prob. 62APCh. 2 - Prob. 63APCh. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - Prob. 65APCh. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - An elevator moves downward in a tall building at a...Ch. 2 - Prob. 68APCh. 2 - Prob. 69APCh. 2 - Prob. 70APCh. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 72APCh. 2 - Prob. 73APCh. 2 - Prob. 74APCh. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 76APCh. 2 - Prob. 77APCh. 2 - Prob. 78APCh. 2 - Prob. 79APCh. 2 - Prob. 80APCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - In a womens 100-m race, accelerating uniformly,...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Problem 1: Two trucks both cover a straight distance, d = 297 m, in time t = 11.5 s. Truck A moves at a constant velocity (vA). Truck B moves at a constant acceleration (aB), starting from an initial velocity of v0B = 5.9 m/s. Assume both trucks are moving in the positive x-direction. Part (b) What is the final velocity of Truck B? Part (c) What is the acceleration of Truck B?arrow_forwardAs soon as a traffic light turns green, a car speeds up from rest to 48.0 mi/h with constant acceleration 10.00 mi/h/s. In the adjoining bike lane, a cyclist speeds up from rest to 25.0 mi/h with constant acceleration 14.50 mi/h/s. Each vehicle maintains constant velocity after reaching its cruising speed. (a) For what time interval is the bicycle ahead of the car? X S (b) By what maximum distance does the bicycle lead the car? X ftarrow_forwardA person is driving along a straight highway at a speed of 22.0 m/s when the traffic light which is 40.0 m ahead turns yellow. Because of his "reaction time", there is a delay of 0.13 seconds before the man steps on the brake. The car then slows with a deceleration of 4.30 m/s. By how much distance does the driver miss the traffic light line?arrow_forward
- A blue car travels down a straight road at a constant speed of 18.9 m/s. As they pass a red car, initially stopped on the side of the road, the red car speeds up at a rate of 2.01 m/s2. How much distance (in m) does the blue car travel before the red car overtakes the blue car?arrow_forwardAt the instant the traffic light turns green, a car starts with a constant acceleration of 2.31 m/s2. At the same instant a truck, traveling with a constant speed of 9.55 m/s, overtakes and passes the car. How far beyond the traffic signal will the car overtake the truck? Answer:arrow_forwardAt the instant the traffic light turns green, a car that has been waiting at an intersection starts ahead with a constant acceleration of 3.05 m/s2 . At the same instant a truck, traveling with a constant speed of 25.0 m/s , overtakes and passes the car. How far beyond its starting point does the car overtake the truck?arrow_forward
- A car is moving with a speed of 32.0 m/s. The driver sees an accident ahead and slams on the brakes, causing the car to slow down with a uniform acceleration of magnitude 3.50 m/s2. How far does the car travel after the driver put on the brakes until it comes to a stop?arrow_forwardYou drive a beat-up pickup truck along a straight road for 8.4 km at 70 km/h, at which point the truck runs out of gasoline and stops. Over the next 30 min, you walk another 2.0 km farther along the road to a gasoline station. (a) What is your overall displacement from the beginning of your drive to your arrival at the station?arrow_forwardA Gold Car moving at 12.0 m/s passes a Green Car while the Green Car is at rest at a stoplight. The Green Car immediately accelerates at a rate of +1.80 m/s/s for 11.0 seconds seconds and then maintains a constant speed. After how much time (relative to the initial starting time) must the Green Car drive before catching up with the Gold Car.arrow_forward
- I am having trouble finding the average velocity of a truck in a problem. The problem states, "A truck on a straight road starts from rest, accelerating at 2.00 m/s2 until it reaches a speed of 20.0 m/s. Then the truck travels for 60.0 s at constant speed until the brakes are applied, stopping the truck in a uniform manner in an additional 5.00 s." I know that the truck is in motion for 75 seconds and I know that average velocity is displacement/time but I havent been able to get the right number.arrow_forwardYou’re driving your car towards an intersection at a constant speed of 11.0 m/s. A Porsche is stopped behind the line at the red light. At the moment when you are 15.0 m from the line, the light turns green, and the Porsche begins to accelerate from rest at a constant rate of 3.00 m/s2. You continue at the same constant speed. (a) How many seconds after the light turns green do you pass the Porsche? (b) How far (in meters) from the stop line do you pass the Porsche? (c) As the Porsche keeps accelerating, it eventually catches up to you again. How many seconds after the light turns green does it pass you? (d) How far (in meters) from the stop line does it pass you? Not: New drawing also with solutionarrow_forwardA football player, starting from rest at the line of scrimmage, accelerates along a straight line for a time of 3.49 s. Then, during a negligible amount of time, he changes the magnitude of his acceleration to a value of 1.37 m/s2. With this acceleration, he continues in the same direction for another 1.35 s, until he reaches a speed of 7.64 m/s. What is the value of his acceleration (assumed to be constant) during the initial 3.49 -s period? Number i Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY