The free-surface height in the right leg.
The free-surface height in the left leg.
Explanation of Solution
Write the expression for the volume of the right end leg of U-tube.
Here, the volume is
The extra water added to the U-tube will displace the mercury, so the height of the column will be changed.
Write the expression for the final pressure in the left leg of U-tube.
Here, the pressure in the left leg is
Write the expression for the final pressure in the right leg of U-tube.
Here, the pressure in the right leg is
Since all the liquid column of the U-tube is in equilibrium, the pressure in the right and left leg are same
Equate Equation (II) and Equation (III).
Write the expression for the final height of the right leg.
Write the expression for the final height of the left leg.
Conclusion:
Refer to the Table 2.1 “Specific Weight of Some Common Fluids” to obtain the specific weight of the water as
Refer to the Table 2.1 “Specific Weight of Some Common Fluids” to obtain the specific weight of the mercury as
Substitute
Substitute
Substitute
Thus, the free-surface height in the right leg is
Substitute
Thus, the free-surface height in the left leg is
Want to see more full solutions like this?
Chapter 2 Solutions
Fluid Mechanics
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY