Fluid Mechanics
8th Edition
ISBN: 9780073398273
Author: Frank M. White
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 2.117P
The solid sphere in Fig. P2.117 is iron (
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I need a detailed drawing with explanation
so
Solle
4
يكا
Pax Pu + 96**
motion is as follows;
1- Dwell 45°.
Plot the displacement diagram for a cam with flat follower of width 14 mm. The required
2- Rising 60 mm in 90° with Simple Harmonic Motion.
3- Dwell 90°.
4- Falling 60 mm for 90° with Simple Harmonic Motion.
5- Dwell 45°.
cam is 50 mm.
Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the
55
---20125
750 X 2.01
1989
Ashaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque
required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops
from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180
degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to
20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter.
Determine the power required to drive the machine and percentage fluctuation in speed, if the driving
torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of
500 mm. What is the maximum angular acceleration of the flywheel.
35,000
TNM
20,000
10,000
0
90
270
495
Crank angle 8 degrees
720
chanism shown in figure below, the crank OA rotates at 60 RPM counterclockwise. The
velocity diagram is also drawn to scale (take dimensions from space diagram). Knowing that QCD is rigid
plate, determine:
a. Linear acceleration of slider at B,
b.
Angular acceleration of the links AC, plate CQD, and BD.
D
Space Diagram
Scale 1:10
A
ES
a
o,p,g
b
Velocity Diagram
Scale 50 mm/(m/s)
d
Chapter 2 Solutions
Fluid Mechanics
Ch. 2 - Prob. 2.1PCh. 2 - For the two-dimensional stress field shown in Fig....Ch. 2 - A vertical, clean, glass piezometer tube has an...Ch. 2 - P2.4 Pressure gages, such as the bourdon gage in...Ch. 2 - Quito, Ecuador, has an average altitude of 9350...Ch. 2 - Prob. 2.6PCh. 2 - La Paz, Bolivia, is at an altitude of...Ch. 2 - P2.8 Suppose, which is possible, that there is a...Ch. 2 - A storage tank, 26 ft in diameter and 36 ft high,...Ch. 2 - P2.10 A large open tank is open to sea-level...
Ch. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - Prob. 2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - The system in Fig. P2.18 is at 20°C. If...Ch. 2 - Prob. 2.19PCh. 2 - The hydraulic jack in Fig. P2.20 is filled with...Ch. 2 - At 20°C gage A reads 350 kPa absolute. What is the...Ch. 2 - The fuel gage for a gasoline tank in a car reads...Ch. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. 2.26PCh. 2 - P2.27 Conduct an experiment to illustrate...Ch. 2 - Prob. 2.28PCh. 2 - Prob. 2.29PCh. 2 - Prob. 2.30PCh. 2 - In Fig. P2.31 all fluids arc at 20°C. Determine...Ch. 2 - For the inverted manometer of Fig. P2.32, all...Ch. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Water flows upward in a pipe slanted at 30°, as in...Ch. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - If the pressure in container A in Fig. P2.38 is...Ch. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - P2.41 The system in Fig. P2.41 is at 20°C....Ch. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - In Fig. P2.46 both ends of the manometer are open...Ch. 2 - Prob. 2.47PCh. 2 - The system in Fig. P2.4H is open to 1 atm on the...Ch. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Gate AB in Fig. P2.51 is 1.2 m long and 0.8 m into...Ch. 2 - Example 2.5 calculated the force on plate AB and...Ch. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Gate AB in Fig. P2.55 is 5 ft wide into the paper,...Ch. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Gate AB has length L and width b into the paper,...Ch. 2 - Prob. 2.60PCh. 2 - Gale AB in Fig. P2.61 is homogeneous mass of 180...Ch. 2 - Gale AB in Fig. P2.62 is 15 ft long and 8 ft wide...Ch. 2 - The tank in Fig. P2.63 has a 4-cm-diameter plug at...Ch. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - P2.68 Isosceles triangle gate AB in Fig. P2.68 is...Ch. 2 - P2.69 Consider the slanted plate AB of length L in...Ch. 2 - Prob. 2.70PCh. 2 - Prob. 2.71PCh. 2 - Prob. 2.72PCh. 2 - P2.73 Gate AB is 5 ft wide into the paper and...Ch. 2 - Prob. 2.74PCh. 2 - Prob. 2.75PCh. 2 - Prob. 2.76PCh. 2 - P2.77 The circular gate ABC in Fig. P2.77 has l-m...Ch. 2 - Prob. 2.78PCh. 2 - Prob. 2.79PCh. 2 - Prob. 2.80PCh. 2 - Prob. 2.81PCh. 2 - Prob. 2.82PCh. 2 - Prob. 2.83PCh. 2 - Prob. 2.84PCh. 2 - P2.85 Compute the horizontal and vertical...Ch. 2 - Prob. 2.86PCh. 2 - The bottle of champagne (SG = 0.96) in Fig. P2.87...Ch. 2 - Prob. 2.88PCh. 2 - Prob. 2.89PCh. 2 - The lank in Fig. P2.90 is 120 cm long into the...Ch. 2 - The hemispherical dome in Fig. P2.91 weighs 30 kN...Ch. 2 - A 4-m-diameter water lank consists of two half...Ch. 2 - Prob. 2.93PCh. 2 - Prob. 2.94PCh. 2 - Prob. 2.95PCh. 2 - Prob. 2.96PCh. 2 - Prob. 2.97PCh. 2 - Prob. 2.98PCh. 2 - The mega-magnum cylinder in Fig. P2.99 has a...Ch. 2 - Pressurized water fills the tank in Fig, P2.100....Ch. 2 - Prob. 2.101PCh. 2 - Prob. 2.102PCh. 2 - Prob. 2.103PCh. 2 - Prob. 2.104PCh. 2 - P2.105 it is said that Archimedes discovered the...Ch. 2 - Prob. 2.106PCh. 2 - Prob. 2.107PCh. 2 - P2.108 A 7-cm-diameter solid aluminum ball (SG =...Ch. 2 - Prob. 2.109PCh. 2 - Prob. 2.110PCh. 2 - P2.111 A solid wooden cone (SG = 0.729) floats in...Ch. 2 - The uniform 5-m-long round wooden rod in Fig....Ch. 2 - Prob. 2.113PCh. 2 - Prob. 2.114PCh. 2 - P2.115 The 2-in by 2-in by 12-ft spar buoy from...Ch. 2 - Prob. 2.116PCh. 2 - The solid sphere in Fig. P2.117 is iron ( SG7.9 )....Ch. 2 - Prob. 2.118PCh. 2 - Prob. 2.119PCh. 2 - Prob. 2.120PCh. 2 - Prob. 2.121PCh. 2 - Prob. 2.122PCh. 2 - Prob. 2.123PCh. 2 - Prob. 2.124PCh. 2 - Prob. 2.125PCh. 2 - Prob. 2.126PCh. 2 - Prob. 2.127PCh. 2 - Prob. 2.128PCh. 2 - Prob. 2.129PCh. 2 - Prob. 2.130PCh. 2 - Prob. 2.131PCh. 2 - Prob. 2.132PCh. 2 - Prob. 2.133PCh. 2 - Prob. 2.134PCh. 2 - P2.135 Consider a homogeneous right circular...Ch. 2 - Prob. 2.136PCh. 2 - Prob. 2.137PCh. 2 - Prob. 2.138PCh. 2 - P2.139 The tank of liquid in Kg. P2.139...Ch. 2 - P2.140 The U-tube in Fig, P2.140 is moving to the...Ch. 2 - The same tank from Prob. P2.139 is now moving with...Ch. 2 - Prob. 2.142PCh. 2 - Prob. 2.143PCh. 2 - Prob. 2.144PCh. 2 - A fish tank 14 in deep by 16 by 27 in is to be...Ch. 2 - Prob. 2.146PCh. 2 - Prob. 2.147PCh. 2 - Prob. 2.148PCh. 2 - Prob. 2.149PCh. 2 - Prob. 2.150PCh. 2 - Prob. 2.151PCh. 2 - P2.152 A 16-cm-diamctcr open cylinder 27 cm high...Ch. 2 - Prob. 2.153PCh. 2 - Prob. 2.154PCh. 2 - Prob. 2.155PCh. 2 - Prob. 2.156PCh. 2 - Prob. 2.157PCh. 2 - Prob. 2.158PCh. 2 - Prob. 2.159PCh. 2 - Prob. 2.160PCh. 2 - Prob. 2.161PCh. 2 - Prob. 2.1WPCh. 2 - Prob. 2.2WPCh. 2 - W2.3 Consider a submerged curved surface that...Ch. 2 - Prob. 2.4WPCh. 2 - Prob. 2.5WPCh. 2 - W2.6 Consider a balloon of mass m floating...Ch. 2 - Prob. 2.7WPCh. 2 - W2.8 Repeat your analysis of Prob. W2.7 to let the...Ch. 2 - Prob. 2.9WPCh. 2 - Prob. 2.1FEEPCh. 2 - FE2.2 On a sea-level standard day, a pressure...Ch. 2 - Prob. 2.3FEEPCh. 2 - In Fig, FE2,3, if the oil in region B has SG = 0,8...Ch. 2 - Prob. 2.5FEEPCh. 2 - Prob. 2.6FEEPCh. 2 - Prob. 2.7FEEPCh. 2 - Prob. 2.8FEEPCh. 2 - Prob. 2.9FEEPCh. 2 - Prob. 2.10FEEPCh. 2 - Prob. 2.1CPCh. 2 - Prob. 2.2CPCh. 2 - Prob. 2.3CPCh. 2 - Prob. 2.4CPCh. 2 - Prob. 2.5CPCh. 2 - Prob. 2.6CPCh. 2 - Prob. 2.7CPCh. 2 - Prob. 2.8CPCh. 2 - Prob. 2.9CPCh. 2 - Prob. 2.1DPCh. 2 - Prob. 2.2DPCh. 2 - The Leary Engineering Company (see Popular...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A thick closed cylinder, 100 mm inner diameter and 200 mm outer diameter is subjected to an internal pressure of 230 MPa and outer pressure of 70 MPa. Modulus of elasticity, E=200 GPa. and Poisson's ratio is 0.3, determine: i) The maximum hoop stress ii) The maximum shear stress iii) The new dimension of the outer diameter due to these inner and outer pressures.arrow_forwardA ә レ shaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNm 20,000 10,000 495 Crank angle 8 degrees 270 0 90 か ---20125 750 X 2.01 44 720 sarrow_forwardThe gas tank is made from A-36 steel (σy = 250 MPa) and has an inner diameter of 3.50 m. If the tank is designed to withstand a pressure of 1.2 MPa, determine the required minimum wall thickness to the nearest millimeter using (a) The maximum-shear-stress theory (b) Maximum distortion- energy theory. Apply a factor of safety of 1.5 against yielding.arrow_forward
- ә レ Figure below shows a link mechanism in which the link OA rotates uniformly in an anticlockwise direction at 10 rad/s. the lengths of the various links are OA=75 mm, OB-150 mm, BC=150 mm, CD-300 mm. Determine for the position shown, the sliding velocity of D. A A B # Space Diagram o NTS (Not-to-Scale) C 10 =--20125 735) 750 x2.01 اهarrow_forward2 レ Tanism in which the link OA mm. O anticlockwise direction at 10 rad/s, the lengths of the various links are OA=75mm, OB=150mm, BC=150mm,CD=300mm. Determine for the position shown, the sliding velocity of D. A A Space Diagram o NT$ (Not-to-Scale) B # C か 750 x2.01 165 79622arrow_forwardAshaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNM 20,000 10,000 0 90 270 495 Crank angle 8 degrees 720arrow_forward
- Figure below shows a link mechanism in which the link OA rotates uniformly in an anticlockwise direction at 10 rad/s. the lengths of the various links are OA=75 mm, OB-150 mm, BC=150 mm, CD-300 mm. Determine for the position shown, the sliding velocity of D. A 45 B Space Diagram o NTS (Not-to-Scale) C Darrow_forwardmotion is as follows; 1- Dwell 45°. Plot the displacement diagram for a cam with flat follower of width 14 mm. The required 2- Rising 60 mm in 90° with Simple Harmonic Motion. 3- Dwell 90°. 4- Falling 60 mm for 90° with Simple Harmonic Motion. 5- Dwell 45°. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm.arrow_forwardAn ideal gas, occupying a volume of 0.02 m3 , has a temperature of 25 0C and is at 1.2 bar. The gas is compressed reversibly and adiabatically to a final pressure of 8 bar. Assuming the gas has an adiabatic index of γ = 1.4, calculate (a) the final temperature, (b) the final volume, (c) the work performed during the compression and (d) the heat transferred.arrow_forward
- attached is a past paper question in which we werent given the solution. a solution with clear steps and justification would be massively appreciated thankyou.arrow_forwardin this scenario, when it comes to matrix iterations it states this system is assumed out of phase. why is this?arrow_forwardQ1. A curved beam of a circular cross section of diameter "d" is fixed at one end and subjected to a concentrated load P at the free end (Fig. 1). Calculate stresses at points A and C. Given: P = 800 N, d = 30 mm, a 25 mm, and b = 15 mm. Fig.1 P b B (10 Marks)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY