
Fluid Mechanics
8th Edition
ISBN: 9780073398273
Author: Frank M. White
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.70P
To determine
To find: the value of
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
This problem studies the response of two single degree of freedom bridge systems shown in Figure 1 under three loading cases. The problem has two parts. Part A and Part B use the same loading cases but the system is modified. Assume the following three loading cases in both Part A and Part B: (a) Harmonic wind load acting on the bridge deck pw(t) = powsin(ωwt) with amplitude pow and forcing circular frequency ωw. (b) Harmonic displacement base excitation acting at the base of the bridge pier ug(t) = ugosin(ωgt) with amplitude ugo and displacement circular frequency ωg. (c) Rectangular pulse load acting on the bridge deck with amplitude pop and pulse duration td.
Part A The system includes part of a bridge deck and a bridge pier shown in Figure 1(a). For each loading case find the symbolic expression of the peak shear force in the bridge pier assuming the following: • The bridge deck is rigid and it has a mass m. • The bridge deck is rigidly connected with the bridge pier (i.e.,…
specific speed
P
#2
Q.2. A Pelton wheel turbine of 1.9 m diameter works under a head of 50 m at 150 rpm. The buckets are
exposed to water jet which delivers from a nozzle of 20 cm in diameter. Find the overall efficiency
power produced by the wheel if the buckets deflects the jet through an angle of 163°.
coefficient of velocity as 0.98 [50 Marks]
·licosply
Y
and no
Take the
d
Q.2. A Pelton wheel has a mean bucket speed of 15 m/s. The jet of water issued from a nozzle of 12 cm in
diameter impinges the bucket with a velocity of 40 m/s. If the buckets deflect the jet through an angle
of 165°, find the head and power generated by the turbine. Assume the hydraulic efficiency is 90% and
the mechanical efficiency is 85%. [50 Marks]
Po
7n = 90%
Chapter 2 Solutions
Fluid Mechanics
Ch. 2 - Prob. 2.1PCh. 2 - For the two-dimensional stress field shown in Fig....Ch. 2 - A vertical, clean, glass piezometer tube has an...Ch. 2 - P2.4 Pressure gages, such as the bourdon gage in...Ch. 2 - Quito, Ecuador, has an average altitude of 9350...Ch. 2 - Prob. 2.6PCh. 2 - La Paz, Bolivia, is at an altitude of...Ch. 2 - P2.8 Suppose, which is possible, that there is a...Ch. 2 - A storage tank, 26 ft in diameter and 36 ft high,...Ch. 2 - P2.10 A large open tank is open to sea-level...
Ch. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - Prob. 2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - The system in Fig. P2.18 is at 20°C. If...Ch. 2 - Prob. 2.19PCh. 2 - The hydraulic jack in Fig. P2.20 is filled with...Ch. 2 - At 20°C gage A reads 350 kPa absolute. What is the...Ch. 2 - The fuel gage for a gasoline tank in a car reads...Ch. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. 2.26PCh. 2 - P2.27 Conduct an experiment to illustrate...Ch. 2 - Prob. 2.28PCh. 2 - Prob. 2.29PCh. 2 - Prob. 2.30PCh. 2 - In Fig. P2.31 all fluids arc at 20°C. Determine...Ch. 2 - For the inverted manometer of Fig. P2.32, all...Ch. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Water flows upward in a pipe slanted at 30°, as in...Ch. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - If the pressure in container A in Fig. P2.38 is...Ch. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - P2.41 The system in Fig. P2.41 is at 20°C....Ch. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - In Fig. P2.46 both ends of the manometer are open...Ch. 2 - Prob. 2.47PCh. 2 - The system in Fig. P2.4H is open to 1 atm on the...Ch. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Gate AB in Fig. P2.51 is 1.2 m long and 0.8 m into...Ch. 2 - Example 2.5 calculated the force on plate AB and...Ch. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Gate AB in Fig. P2.55 is 5 ft wide into the paper,...Ch. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Gate AB has length L and width b into the paper,...Ch. 2 - Prob. 2.60PCh. 2 - Gale AB in Fig. P2.61 is homogeneous mass of 180...Ch. 2 - Gale AB in Fig. P2.62 is 15 ft long and 8 ft wide...Ch. 2 - The tank in Fig. P2.63 has a 4-cm-diameter plug at...Ch. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - P2.68 Isosceles triangle gate AB in Fig. P2.68 is...Ch. 2 - P2.69 Consider the slanted plate AB of length L in...Ch. 2 - Prob. 2.70PCh. 2 - Prob. 2.71PCh. 2 - Prob. 2.72PCh. 2 - P2.73 Gate AB is 5 ft wide into the paper and...Ch. 2 - Prob. 2.74PCh. 2 - Prob. 2.75PCh. 2 - Prob. 2.76PCh. 2 - P2.77 The circular gate ABC in Fig. P2.77 has l-m...Ch. 2 - Prob. 2.78PCh. 2 - Prob. 2.79PCh. 2 - Prob. 2.80PCh. 2 - Prob. 2.81PCh. 2 - Prob. 2.82PCh. 2 - Prob. 2.83PCh. 2 - Prob. 2.84PCh. 2 - P2.85 Compute the horizontal and vertical...Ch. 2 - Prob. 2.86PCh. 2 - The bottle of champagne (SG = 0.96) in Fig. P2.87...Ch. 2 - Prob. 2.88PCh. 2 - Prob. 2.89PCh. 2 - The lank in Fig. P2.90 is 120 cm long into the...Ch. 2 - The hemispherical dome in Fig. P2.91 weighs 30 kN...Ch. 2 - A 4-m-diameter water lank consists of two half...Ch. 2 - Prob. 2.93PCh. 2 - Prob. 2.94PCh. 2 - Prob. 2.95PCh. 2 - Prob. 2.96PCh. 2 - Prob. 2.97PCh. 2 - Prob. 2.98PCh. 2 - The mega-magnum cylinder in Fig. P2.99 has a...Ch. 2 - Pressurized water fills the tank in Fig, P2.100....Ch. 2 - Prob. 2.101PCh. 2 - Prob. 2.102PCh. 2 - Prob. 2.103PCh. 2 - Prob. 2.104PCh. 2 - P2.105 it is said that Archimedes discovered the...Ch. 2 - Prob. 2.106PCh. 2 - Prob. 2.107PCh. 2 - P2.108 A 7-cm-diameter solid aluminum ball (SG =...Ch. 2 - Prob. 2.109PCh. 2 - Prob. 2.110PCh. 2 - P2.111 A solid wooden cone (SG = 0.729) floats in...Ch. 2 - The uniform 5-m-long round wooden rod in Fig....Ch. 2 - Prob. 2.113PCh. 2 - Prob. 2.114PCh. 2 - P2.115 The 2-in by 2-in by 12-ft spar buoy from...Ch. 2 - Prob. 2.116PCh. 2 - The solid sphere in Fig. P2.117 is iron ( SG7.9 )....Ch. 2 - Prob. 2.118PCh. 2 - Prob. 2.119PCh. 2 - Prob. 2.120PCh. 2 - Prob. 2.121PCh. 2 - Prob. 2.122PCh. 2 - Prob. 2.123PCh. 2 - Prob. 2.124PCh. 2 - Prob. 2.125PCh. 2 - Prob. 2.126PCh. 2 - Prob. 2.127PCh. 2 - Prob. 2.128PCh. 2 - Prob. 2.129PCh. 2 - Prob. 2.130PCh. 2 - Prob. 2.131PCh. 2 - Prob. 2.132PCh. 2 - Prob. 2.133PCh. 2 - Prob. 2.134PCh. 2 - P2.135 Consider a homogeneous right circular...Ch. 2 - Prob. 2.136PCh. 2 - Prob. 2.137PCh. 2 - Prob. 2.138PCh. 2 - P2.139 The tank of liquid in Kg. P2.139...Ch. 2 - P2.140 The U-tube in Fig, P2.140 is moving to the...Ch. 2 - The same tank from Prob. P2.139 is now moving with...Ch. 2 - Prob. 2.142PCh. 2 - Prob. 2.143PCh. 2 - Prob. 2.144PCh. 2 - A fish tank 14 in deep by 16 by 27 in is to be...Ch. 2 - Prob. 2.146PCh. 2 - Prob. 2.147PCh. 2 - Prob. 2.148PCh. 2 - Prob. 2.149PCh. 2 - Prob. 2.150PCh. 2 - Prob. 2.151PCh. 2 - P2.152 A 16-cm-diamctcr open cylinder 27 cm high...Ch. 2 - Prob. 2.153PCh. 2 - Prob. 2.154PCh. 2 - Prob. 2.155PCh. 2 - Prob. 2.156PCh. 2 - Prob. 2.157PCh. 2 - Prob. 2.158PCh. 2 - Prob. 2.159PCh. 2 - Prob. 2.160PCh. 2 - Prob. 2.161PCh. 2 - Prob. 2.1WPCh. 2 - Prob. 2.2WPCh. 2 - W2.3 Consider a submerged curved surface that...Ch. 2 - Prob. 2.4WPCh. 2 - Prob. 2.5WPCh. 2 - W2.6 Consider a balloon of mass m floating...Ch. 2 - Prob. 2.7WPCh. 2 - W2.8 Repeat your analysis of Prob. W2.7 to let the...Ch. 2 - Prob. 2.9WPCh. 2 - Prob. 2.1FEEPCh. 2 - FE2.2 On a sea-level standard day, a pressure...Ch. 2 - Prob. 2.3FEEPCh. 2 - In Fig, FE2,3, if the oil in region B has SG = 0,8...Ch. 2 - Prob. 2.5FEEPCh. 2 - Prob. 2.6FEEPCh. 2 - Prob. 2.7FEEPCh. 2 - Prob. 2.8FEEPCh. 2 - Prob. 2.9FEEPCh. 2 - Prob. 2.10FEEPCh. 2 - Prob. 2.1CPCh. 2 - Prob. 2.2CPCh. 2 - Prob. 2.3CPCh. 2 - Prob. 2.4CPCh. 2 - Prob. 2.5CPCh. 2 - Prob. 2.6CPCh. 2 - Prob. 2.7CPCh. 2 - Prob. 2.8CPCh. 2 - Prob. 2.9CPCh. 2 - Prob. 2.1DPCh. 2 - Prob. 2.2DPCh. 2 - The Leary Engineering Company (see Popular...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- At its optimum point of caines. operation, a given centrifugal pump with an impeller diameter of 50 cm delivers 3.2 m³/s of water at a 2 head of 25 m when rotating at 1450 rpm and power of 955 kW. If a homologous pump with an impeller diameter of 80 cm rotates at 1200 rpm, what would be the discharge, head, shaft break power and P H₂arrow_forward(read image)arrow_forwardHi, can you please assist with the attached question please. Please do not use Ai software. Many thanks.arrow_forward
- determine the allowable bending and contact stresses for a grade 1 steel through-hardened to 250 HB. Assume the desired reliability is 50% and that the pinion and gear have the same hardness and the gear encounters hydrodynamic lubrication and is to last ten million cyclesarrow_forwardUsing the four-point bending tool, detail the influence of both applied load and notch size on the transverse strain. Cover the following points in your answer. a. A detailed description of the methodology you have used to create a set of results suitable to answer this question. Include details on the placement of line scans, the loads used, etc. (there is no need to describe the process of extracting the data from the interactive or the fundamental principles behind DIC). (5 marks) b. A description of the results you have found, including a written description, images, and both vertical and horizontal line scans from the four-point bending tool. Include a minimum of three loads and three notch sizes in your results. (20 marks) c. The conclusions you can make regarding the influence of load and notch size on the strain experienced by the beam based on the data you collect. (5 marks) To achieve full marks, you will need to include the following in your work: • properly labelled graphs…arrow_forwardUsing the four-point bending tool, discuss how measurements of transverse strain using DIC and compare with those from the strain gauge attached at the centre top of the specimen. In your answer, include the following: a. A short explanation of how each of the strain measurement techniques works. (4 marks) b. A description of the methodology you have used to make the data that you discussed from each technique as comparable as possible. (6 marks) c. A set of figures (images, graphs and/or tables as necessary) with appropriate captions demonstrating the comparability of data extracted from the two strain measurement methods. This should include at least three different applied loads. (10 marks) d. A brief description of the findings. (5 marks)arrow_forward
- An undamped single-degree-of-freedom system consists of a spring with stiffness k = 10 kip/in and a mass weighing W = 10 kips. The system is at rest and it is suddenly subjected to a half-cycle sine pulse force. The pulse force has an amplitude po = 1 kips and time duration td = 0.1 seconds. Calculate the maximum restoring force in the spring due to the pulse force.arrow_forwardm=400mm n=300mm q=28mm r=20mm P=0.9kNarrow_forwarddetermine the allowable bending and contact stresses for a Grade 1 steel through-hardened to 250 HB. Assume the desired reliability is 50 %and that the pinion and gear have the same hardness and it is expected that the gear will encounter 100,000 load cyclesarrow_forward
- Please can you plot the Mohr's strain circle using the above informarrow_forwardA gearbox has permanent shaft positions defined by the bearing mounting positions, but the gear ratio can be changed by changing the number of teeth in the pinion and gear. To achieve similar power transmission ability for different gear ratios, a manufacturer chooses to have the same module for two different gearboxes. One of the gaerboxes has a pinion with 22 teeth, a gear with 68 teeth, and a center distance of 225mm. How large is the gear module and which gear ratios are possible for a pinion with 22 or more teeth using the same module?arrow_forwardA gear train has a 50.3 mm circular pitch and a 25 degree pressure angle and meshes with a pinion having 12 teeth Design this gear train to minimize its volume and the total number of teeth. Obtain the pitch diameters the number of teeth the speed ratio the center distance and the module of this gear train. The gearbox housing has a diameter of 620mmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY