
(a)
The volume of gas at A.
(a)

Answer to Problem 78P
The volume at A is
Explanation of Solution
Given:
The pressure at A is
The temperature at A is
Formula used:
The expression for volume at A is given by,
Calculation:
The volume at A is calculated as,
Conclusion:
Therefore, the volume at A is
(b)
The volume and temperature of gas at B.
(b)

Answer to Problem 78P
The volume and temperature at B are
Explanation of Solution
Formula used:
The expression for volume at B is given by,
The expression for temperature at B is given by,
Calculation:
The volume at B is calculated as,
The temperature at B is calculated as,
Conclusion:
Therefore, the volume and temperature at B are
(c)
The temperature of gas at C.
(c)

Answer to Problem 78P
The temperature at C is
Explanation of Solution
Formula used:
The expression for temperature at C as process is isothermal given by,
Calculation:
The temperature at C is calculated as,
Conclusion:
Therefore, the temperature at C is
(d)
The volume of gas at C.
(d)

Answer to Problem 78P
The volume at C is
Explanation of Solution
Formula used:
The expression for volume at C as process is given by,
Calculation:
The volume at C is calculated as,
Conclusion:
Therefore, the volume at C is
(e)
The work done by gas in each segment of cycle.
(e)

Answer to Problem 78P
The work done in process AB, BC and CA are
Explanation of Solution
Formula used:
The work done in process AB is given by,
The expression for work done in process BC is given by,
The expression for work done in process CA is given by,
Calculation:
The work done in process AB is calculated as,
The work done in process BC is calculated as,
The work done in process CA is calculated as,
Conclusion:
Therefore, the work done in process AB, BC and CA are
(f)
The heat absorbed in each segment of cycle.
(f)

Answer to Problem 78P
The heat absorbed in process AB, BC and CA are
Explanation of Solution
Formula used:
The expression for heat absorbed in process AB is given by,
The expression for heat absorbed in process CA is given by,
Calculation:
The heat absorbed in process AB is calculated as,
The heat absorbed in process BC is 0 because the process is adiabatic.
The heat absorbed in process CA is calculated as,
Conclusion:
Therefore, the heat absorbed in process AB, BC and CA are
Want to see more full solutions like this?
Chapter 19 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- A 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forwardFor each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forward
- Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forwardCalculate the center of mass of the hollow cone shown below. Clearly specify the origin and the coordinate system you are using. Z r Y h Xarrow_forward12. If all three collisions in the figure below are totally inelastic, which will cause more damage? (think about which collision has a larger amount of kinetic energy dissipated/lost to the environment? I m II III A. I B. II C. III m m v brick wall ע ע 0.5v 2v 0.5m D. I and II E. II and III F. I and III G. I, II and III (all of them) 2marrow_forward
- 11. If all three collisions in the figure below are totally inelastic, which brings the car of mass (m) on the left to a halt? I m II III m m ע ע ע brick wall 0.5v 2m 2v 0.5m A. I B. II C. III D. I and II E. II and III F. I and III G. I, II and III (all of them)arrow_forwardHow can you tell which vowel is being produced here ( “ee,” “ah,” or “oo”)? Also, how would you be able to tell for the other vowels?arrow_forwardYou want to fabricate a soft microfluidic chip like the one below. How would you go about fabricating this chip knowing that you are targeting a channel with a square cross-sectional profile of 200 μm by 200 μm. What materials and steps would you use and why? Disregard the process to form the inlet and outlet. Square Cross Sectionarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning




