
(a)
The average time before molecules reach in left half of the box.
(a)

Answer to Problem 26P
The average time before molecules reach in left half of the box is
Explanation of Solution
Given:
The number of molecules is
The volume of the box is
Formula used:
The expression for average time is given as,
Here,
Calculation:
The average time for
Conclusion:
Therefore, the average time before molecules reach in left half of the box is
(b)
The average time before molecules reach in left half of the box.
(b)

Answer to Problem 26P
The average time before molecules reach in left half of the box is
Explanation of Solution
Given:
The number of molecules is
Calculation:
The average time for
Conclusion:
Therefore, the average time before molecules reach in left half of the box is
(c)
The average time before molecules reach in left half of the box.
(c)

Answer to Problem 26P
The average time before molecules reach in left half of the box is
Explanation of Solution
Given:
The number of molecules is
Calculation:
The average time for
The conversion of
Substitution of the conversion in equation (a) can be given as,
Conclusion:
Therefore, the average time before molecules reach in left half of the box is
(d)
The average time before molecules reach in left half of the box.
(d)

Answer to Problem 26P
The average time before molecules reach in left half of the box is
Explanation of Solution
Given:
The number of molecules is
Calculation:
The average time for
The conversion of
Substitution of the conversion in equation (2) can be given as,
Conclusion:
Therefore, the average time before molecules reach in left half of the box is
(e)
The physicist waiting time before all of the gas molecules in the vacuum chamber occupy only the left half of chamber and comparison with expected lifetime of the universe.
(e)

Answer to Problem 26P
The average time is
Explanation of Solution
Given:
The pressure at which best vacuum created is
The expected lifetime of the universe is
Formula used:
The expression for the ideal gas is given as,
Here,
The expression for the comparison is given as,
Calculation:
The number of moles in vacuum condition at
On further solving the above equation,
The average time of molecules in vacuum to occupy left half of the chamber can be calculated as,
The conversion of
Substitution of the conversion in equation (2) can be given as,
The comparison can be given as,
Conclusion:
Therefore, the average time is
Want to see more full solutions like this?
Chapter 19 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- An object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning





