
(a)
The P - Vdiagram of the cycle, work done by the gas, heat absorbed by the gas and change in internal energy of the gas.
(a)

Answer to Problem 31P
The work done by the gas in each step are
Explanation of Solution
Given:
The initial pressure of the gas is
The initial volume of the gas is
The pressure at state 2 and 3 is
The volume at state 3 and 4 is
The pressure final pressure of the gas is
Formula used:
The expression for the specific heat ratio is given as,
Here,
The expression for heat absorbed by the gas in stage 1-2 is given as,
The expression for heat absorbed by the gas in stage 2-3 is given as,
The expression for heat absorbed by the gas in stage 3-4 is given as,
The expression for heat absorbed by the gas in stage 4-1 is given as,
The expression for the work done in stage 2-3 is given as,
The expression for the work done in stage 4-1 is given as,
The expression for change in internal energy in stage 1-2 is given as,
The expression for change in internal energy in stage 2-3 is given as,
The expression for change in internal energy in stage 3-4 is given as,
The expression for change in internal energy in stage 4-1 is given as,
Calculation:
The P-V diagram for the cycle can be given as,
Figure 1
For monoatomic gas specific heat at constant volume and constant pressure can be given as,
The specific heat ratio can be calculated as,
The heat absorbed by the gas in stage 1-2 can be calculated as,
The expression for heat absorbed by the gas in stage 2-3 is given as,
The expression for heat absorbed by the gas in stage 3-4 is given as,
The expression for heat absorbed by the gas in stage 4-1 is given as,
The work done in stage 1-2 is zero because it is constant volume process.
The work done in stage 2-3 can be calculated as,
The work done in stage 3-4 is zero because it is constant volume process.
The work done in stage 4-1 can be calculated as,
The expression for change in internal energy in stage 1-2 is given as,
The expression for change in internal energy in stage 2-3 is given as,
The expression for change in internal energy in stage 3-4 is given as,
The expression for change in internal energy in stage 4-1 is given as,
Conclusion:
Therefore,the work done by the gas in each step are
(b)
The efficiency of the cycle.
(b)

Answer to Problem 31P
The efficiency of the cycle is
Explanation of Solution
Formula used:
The expression for total heat supplied to the cycle is given as,
The expression for total work done in the cycle is given as,
The expression for efficiency of the cycle is given as,
Here,
Calculation:
The total heat supplied to the cycle can be calculated as,
The total work done in the cycle can be calculated as,
The efficiency of the cycle can be calculated as,
Conclusion:
Therefore, the efficiency of the cycle is
Want to see more full solutions like this?
Chapter 19 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- Sketch the harmonic.arrow_forwardFor number 11 please sketch the harmonic on graphing paper.arrow_forward# E 94 20 13. Time a) What is the frequency of the above wave? b) What is the period? c) Highlight the second cycle d) Sketch the sine wave of the second harmonic of this wave % 7 & 5 6 7 8 * ∞ Y U 9 0 0 P 150arrow_forward
- Show work using graphing paperarrow_forwardCan someone help me answer this physics 2 questions. Thank you.arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 μF.) a C 3.00 με Hh. 6.00 με 20.0 με HE (a) Find the equivalent capacitance between points a and b. 5.92 HF (b) Calculate the charge on each capacitor, taking AV ab = 16.0 V. 20.0 uF capacitor 94.7 6.00 uF capacitor 67.6 32.14 3.00 µF capacitor capacitor C ☑ με με The 3 µF and 12.0 uF capacitors are in series and that combination is in parallel with the 6 μF capacitor. What quantity is the same for capacitors in parallel? μC 32.14 ☑ You are correct that the charge on this capacitor will be the same as the charge on the 3 μF capacitor. μCarrow_forward
- In the pivot assignment, we observed waves moving on a string stretched by hanging weights. We noticed that certain frequencies produced standing waves. One such situation is shown below: 0 ст Direct Measurement ©2015 Peter Bohacek I. 20 0 cm 10 20 30 40 50 60 70 80 90 100 Which Harmonic is this? Do NOT include units! What is the wavelength of this wave in cm with only no decimal places? If the speed of this wave is 2500 cm/s, what is the frequency of this harmonic (in Hz, with NO decimal places)?arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forwardTwo conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forward
- Please see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forwardA spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





