PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 19, Problem 55P
To determine
The proof that net entropy of universe increases.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
One of the statements of the second law is that “heat cannot flow from a colder body to awarmer one without external aid”. Assume two systems, 1 and 2, at T1 and T2 (whereT2 > T1 ). Show that if a quantity of heat q did flow spontaneously from 1 to 2, the processwould result in a decrease in the entropy of the universe. [You may assume that the heat flowsso slowly that the process can be regarded as reversible. Assume also that the loss of heat bythe system 1 and the gain of heat by 2 do not affect T1 and T2 .]
QUESTION 2: In a frictionless piston-cylinder assembly, it is initially submerged as a saturated liquid at a pressure of 200 kPa. Then, 450 kJ of heat transfer occurs from a source with a temperature of 500 0C to water and some of the water evaporates at constant pressure. Show whether this state change is feasible or not, considering the increase of entropy principle.
An ice cube (mass 30 g) at 0°C is left sitting on the kitchen table, where it gradually melts. The temperature in the kitchen is 25°C. (a) Calculate the change in the entropy of the ice cube as it melts into water at 0°C. (Don't worry about the fact that the volume changes somewhat.) (b) Calculate the change in the entropy of the water (from the melted ice) as its temperature rises from 0°C to 25°C. (c) Calculate the change in the entropy of the kitchen as it gives up heat to the melting ice/water. (d) Calculate the net change in the entropy of the universe during this process. Is the net change positive, negative, or zero? Is this what you would expect?
Chapter 19 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 19 - Prob. 1PCh. 19 - Prob. 2PCh. 19 - Prob. 3PCh. 19 - Prob. 4PCh. 19 - Prob. 5PCh. 19 - Prob. 6PCh. 19 - Prob. 7PCh. 19 - Prob. 8PCh. 19 - Prob. 9PCh. 19 - Prob. 10P
Ch. 19 - Prob. 11PCh. 19 - Prob. 12PCh. 19 - Prob. 13PCh. 19 - Prob. 14PCh. 19 - Prob. 15PCh. 19 - Prob. 16PCh. 19 - Prob. 17PCh. 19 - Prob. 18PCh. 19 - Prob. 19PCh. 19 - Prob. 20PCh. 19 - Prob. 21PCh. 19 - Prob. 22PCh. 19 - Prob. 23PCh. 19 - Prob. 24PCh. 19 - Prob. 25PCh. 19 - Prob. 26PCh. 19 - Prob. 27PCh. 19 - Prob. 28PCh. 19 - Prob. 29PCh. 19 - Prob. 30PCh. 19 - Prob. 31PCh. 19 - Prob. 32PCh. 19 - Prob. 33PCh. 19 - Prob. 34PCh. 19 - Prob. 35PCh. 19 - Prob. 36PCh. 19 - Prob. 37PCh. 19 - Prob. 38PCh. 19 - Prob. 39PCh. 19 - Prob. 40PCh. 19 - Prob. 41PCh. 19 - Prob. 42PCh. 19 - Prob. 43PCh. 19 - Prob. 44PCh. 19 - Prob. 45PCh. 19 - Prob. 46PCh. 19 - Prob. 47PCh. 19 - Prob. 48PCh. 19 - Prob. 49PCh. 19 - Prob. 50PCh. 19 - Prob. 51PCh. 19 - Prob. 52PCh. 19 - Prob. 53PCh. 19 - Prob. 54PCh. 19 - Prob. 55PCh. 19 - Prob. 56PCh. 19 - Prob. 57PCh. 19 - Prob. 58PCh. 19 - Prob. 59PCh. 19 - Prob. 60PCh. 19 - Prob. 61PCh. 19 - Prob. 62PCh. 19 - Prob. 63PCh. 19 - Prob. 64PCh. 19 - Prob. 65PCh. 19 - Prob. 66PCh. 19 - Prob. 67PCh. 19 - Prob. 68PCh. 19 - Prob. 69PCh. 19 - Prob. 70PCh. 19 - Prob. 71PCh. 19 - Prob. 72PCh. 19 - Prob. 73PCh. 19 - Prob. 74PCh. 19 - Prob. 75PCh. 19 - Prob. 76PCh. 19 - Prob. 77PCh. 19 - Prob. 78PCh. 19 - Prob. 79PCh. 19 - Prob. 80PCh. 19 - Prob. 81PCh. 19 - Prob. 82PCh. 19 - Prob. 83PCh. 19 - Prob. 84PCh. 19 - Prob. 85PCh. 19 - Prob. 86PCh. 19 - Prob. 87PCh. 19 - Prob. 88PCh. 19 - Prob. 89P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) infinitesimal amount of heat is added reversibly to a system. By combining the first and second laws, show that dU=TdSdW. (b) When heat is added to an ideal gas, its temperature and volume change from T1 and V1 to T2 and V2 . Show that the entropy change of n moles of the gas is given by S=CnvlnT2T1nRlnV2V1 .arrow_forwardCheck Your Understanding A quantity of heat Q is absorbed from a reservoir at a temperature Th by a cooler reservoir at a temperature Tc . What is the entropy change of the hot reservoir, the cold reservoir, and the universe?arrow_forwardA 0.50-kg piece of aluminum at 250 is dropped into 1.0 kg of water at 20 . After equilibrium is reached, what is the net entropy change of the system?arrow_forward
- In an isochoric process, heat is added to 10 mol of monoatomic ideal gas whose temperature increases from 273 to 373 K. What is the entropy change of the gas?arrow_forwardTwo hundred joules of heat are removed from a heat at a temperature of 200 K. What is the entropy change of the reservoir?arrow_forwardCheck Your Understanding A 50-g copper piece at a temperature of 20 is placed into a large insulated vat of water in 100 . (a) What is the entropy change of the copper piece when it reaches thermal equilibrium with the water? (b) What is the entropy change of the water? (c) What is the entropy change of the universe?arrow_forward
- Two moles of a monatomic ideal gas such as oxygen is compressed adiabatically and reversibly from a state (3 atm, 5 L) to a state with a pressure of 4 atm. (a) Find the volume and temperature of the final state. (b) Find the temperature of the initial state. (c) Find work done by the gas in the process. (d) Find the change in internal energy in the process. Assume Cv=5R and Cp=Cv+R for the diatomic ideal gas in the conditions given.arrow_forwardFor the Carnot cycle of Figure 4.12, what is the entropy change of the hot reservoir, the cold reservoir, and the universe? Figure 4.11 The four processes of the Carnot cycle. The working substance is assumed to be an ideal gas whose thermodynamic path MNOP is represented in Figure 4.12. Figure 4.12 The total work done by the gas in the Carnot cycle is shown and given by the area enclosed by the loop MNOPM.arrow_forwardCheck Your Understanding In Example 4.7, the spontaneous flow of heat from a hot object to a cold object results in a net increase in entropy of the universe. Discuss how this result can be related to an increase in disorder of the system.arrow_forward
- Suppose that the temperature of the water in the previous problem is raised by fist bringing it to thermal equilibrium with a reservoir at a temperature of 40 and then with a reservoir at 80 . Calculate the entropy changes of (a) each reservoir, (b) of the water, and (c) of the universe.arrow_forward(a) A 5.0-kg rock at a temperature of 20 is dropped into a shallow lake also at 20 from a height of 1.0103 m. What is the resulting change in entropy of the universe? (b) If the temperature of the lock is 100 when it is dropped, what is the change of entropy of the universe? Assume that air friction is negligible (not a good assumption) and that c=860 J/kg K is the specific heat of the rock.arrow_forwardSuppose 20 g of ice at 0 is added to 300 g of water at 60 . What is the total change in entropy of the mixture after it reaches thermal equilibrium?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY