bartleby

Concept explainers

Question
Book Icon
Chapter 19, Problem 54P

a)

Interpretation Introduction

Interpretation:

The most reactive compound in an electrophilic aromatic substitution reaction for each row of substituted benzenes has to be predicted.

Concept Introduction:

Effect of an electron withdrawing or an electron releasing group:

The electron withdrawing or electron releasing groups have significance role in the activation and deactivation of benzene rings during an electrophilic aromatic substitution reaction. An electron withdrawing group deactivates the benzene rings by reducing the electron density on the rings. The electrophilic groups have the tendency to accept or withdraw the electrons from the rest of compound. The deactivating groups are those groups that tend to withdraw the electron density from the benzene ring and decrease the overall rate of reactions.

Rule: The rate of reactions in aromatic electrophilic substitution reactions rely upon the presence of an electron releasing or an electron withdrawing group.

b)

Interpretation Introduction

Interpretation:

The least reactive compound in an electrophilic aromatic substitution reaction for each row of substituted benzenes has to be predicted.

Concept Introduction:

Effect of an electron withdrawing or an electron releasing group:

The electron withdrawing or electron releasing groups have significance role in the activation and deactivation of benzene rings during an electrophilic aromatic substitution reaction. An electron withdrawing group deactivates the benzene rings by reducing the electron density on the rings. The electrophilic groups have the tendency to accept or withdraw the electrons from the rest of compound. The deactivating groups are those groups that tend to withdraw the electron density from the benzene ring and decrease the overall rate of reactions.

Rule: The rate of reactions in aromatic electrophilic substitution reactions rely upon the presence of an electron releasing or an electron withdrawing group.

c)

Interpretation Introduction

Interpretation:

The compound that yields the highest percentage of a meta product in an electrophilic aromatic substitution reaction for each horizontal row of substituted benzenes has to be stated.

Concept Introduction:

Effect of an electron withdrawing or an electron releasing group:

The electron withdrawing or electron releasing groups have significance role in the activation and deactivation of benzene rings during an electrophilic aromatic substitution reaction. An electron withdrawing group deactivates the benzene rings by reducing the electron density on the rings. The electrophilic groups have the tendency to accept or withdraw the electrons from the rest of compound. The deactivating groups are those groups that tend to withdraw the electron density from the benzene ring and decrease the overall rate of reactions.

Rule: The rate of reactions in aromatic electrophilic substitution reactions rely upon the presence of an electron releasing or an electron withdrawing group.

Blurred answer
Students have asked these similar questions
US2 Would this be Uranium (II) diSulfide?
nomenclature for PU(SO4)3
Li2CrO4 is this Lithium (II) Chromate

Chapter 19 Solutions

Organic Chemistry; Modified MasteringChemistry with Pearson eText -- ValuePack Access Card; Study Guide and Student Solutions Manual for Organic Chemistry, Books a la Carte Edition (7th Edition)

Ch. 19.13 - Prob. 13PCh. 19.13 - Prob. 14PCh. 19.14 - Prob. 15PCh. 19.14 - List the compounds in each set from most reactive...Ch. 19.15 - Prob. 18PCh. 19.15 - What product(s) result from nitration of each of...Ch. 19.15 - Prob. 20PCh. 19.16 - Which acid in each of the following pairs is...Ch. 19.16 - Prob. 23PCh. 19.16 - Prob. 24PCh. 19.18 - Show how the following compounds can be...Ch. 19.18 - Give the products, if any, of each of the...Ch. 19.19 - a. Does a coupling reaction have to be used to...Ch. 19.19 - PROBLEM 28 Show how each of the following...Ch. 19.20 - What is the major product(s) of each of the...Ch. 19.20 - Prob. 30PCh. 19.21 - Why isn't FeBr3 used as a catalyst in the first...Ch. 19.21 - Prob. 33PCh. 19.21 - Write the sequence of steps required for the...Ch. 19.21 - Prob. 35PCh. 19.22 - What product is formed from reaction of...Ch. 19.22 - Prob. 37PCh. 19.22 - Draw the structure of the activated ring and the...Ch. 19.23 - Prob. 39PCh. 19.23 - Prob. 40PCh. 19.23 - Diazomethane can be used to convert a carboxylic...Ch. 19.24 - Prob. 42PCh. 19.24 - Prob. 43PCh. 19.24 - Prob. 44PCh. 19.25 - Prob. 45PCh. 19 - Draw the structure for each of the following: a....Ch. 19 - Prob. 47PCh. 19 - Prob. 48PCh. 19 - Prob. 49PCh. 19 - For each of the statements in Column I, choose a...Ch. 19 - What product is obtained from the reaction of...Ch. 19 - Draw the product(s) of each of the following...Ch. 19 - Rank the following substituted anilines from most...Ch. 19 - Prob. 54PCh. 19 - The compound with the 1H NMR spectrum shown below...Ch. 19 - Prob. 56PCh. 19 - Show how the following compounds can be...Ch. 19 - Prob. 58PCh. 19 - Rank each group of compounds from most reactive to...Ch. 19 - Prob. 60PCh. 19 - Describe two ways to prepare anisole from benzene.Ch. 19 - For each of the following components, indicate the...Ch. 19 - Prob. 63PCh. 19 - Prob. 64PCh. 19 - Prob. 65PCh. 19 - Prob. 66PCh. 19 - An aromatic hydrocarbon with a molecular formula...Ch. 19 - The following tertiary alkyl bromides undergo an...Ch. 19 - Show how the following compounds can be...Ch. 19 - Use the four compounds shown below to answer the...Ch. 19 - a. Rank the following esters from most reactive to...Ch. 19 - A mixture of 0.10 mol benzene and 0.10 mol...Ch. 19 - Prob. 73PCh. 19 - Benzene underwent a Friedel-Crafts acylation...Ch. 19 - Prob. 75PCh. 19 - Prob. 76PCh. 19 - Prob. 77PCh. 19 - Friedel-Crafts alkylations can be carried out with...Ch. 19 - Show how the following compounds can be prepared...Ch. 19 - Prob. 80PCh. 19 - Prob. 81PCh. 19 - a. Describe four ways the following reaction can...Ch. 19 - Propose a mechanism for each of the following...Ch. 19 - Prob. 84PCh. 19 - Describe how naphthalene can he prepared from the...Ch. 19 - Prob. 86PCh. 19 - Using resonance contributors for the carbocation...Ch. 19 - Prob. 88PCh. 19 - When heated with chromic acid, compound A forms...Ch. 19 - Prob. 90PCh. 19 - Prob. 91PCh. 19 - What reagents are required to carry out the...Ch. 19 - Show how the following compounds can be prepared...Ch. 19 - An unknown compound reacts with ethyl chloride and...Ch. 19 - How can you distinguish the following compounds...Ch. 19 - P-Fluoronitrobenzene is more reactive toward...Ch. 19 - a. Explain why the following reaction leads to the...Ch. 19 - Describe how mescaline can be synthesized from...Ch. 19 - Propose a mechanism for the following reaction...Ch. 19 - Explain why hydroxide ion catalyzes the reaction...Ch. 19 - Propose a mechanism for each of the following...Ch. 19 - Prob. 102PCh. 19 - Prob. 103PCh. 19 - Describe how 3-methyl-1-phenyl-3-pentanol can he...Ch. 19 - a. How can aspirin be synthesized from benzene? b....Ch. 19 - Prob. 106PCh. 19 - Show how Novocain, a painkiller used frequently by...Ch. 19 - Prob. 108PCh. 19 - Saccharin, an artificial sweetener, is about 300...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning